描述

AT8833为玩具、打印机和其它电机一体化应用提供一种双通 道电机驱动方案。AT8833有两路H桥驱动,可以驱动两路刷式直 流电机,或者一个双极步进电机,或者螺线管或者其它感性负载。

每一个桥的功率输出模块由N通道功率MOSFET组成,叫作H 桥驱动器。每个桥包含整流电路和限流电路。

内部关断功能包含过流保护,短路保护,欠压锁定保护和过温 保护,并提供一个错误输出管脚。

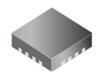
AT8833提供三种封装,一种是带有裸露焊盘的ETSSOP16封装,另两种是带裸焊盘的QFN16封装,尺寸为4*4和3*3,能有效改善散热性能,均是无铅产品,符合环保标准。

应用

- 锂电池供电玩具
- POS 打印机
- 安防相机
- 办公自动化设备
- 游戏机
- 机器人

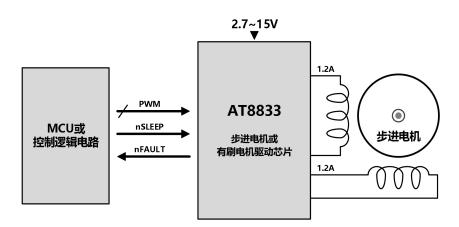
型号选择

产品型号	封装	包装
AT8833CT	ETSSOP16	编带,3000颗/盘
AT8833CQ	QFN4*4-16	编带,5000颗/盘
AT8833CR	QFN3*3-16	编带,5000颗/盘


特点

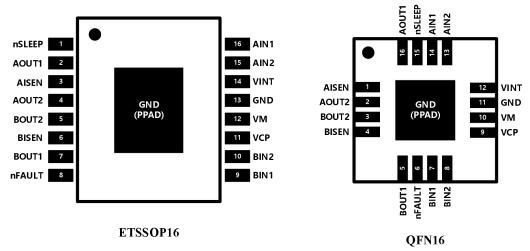
- ●双通道H桥电机驱动器
- •驱动两路直流电机或者一个步进电机
- ●低R_{DS(ON)}电阻, 800mΩ(HS+LS)
- ●1.2A驱动输出
- ●宽电压供电, 2.7V-15V
- ●PWM控制接口
- ●过温关断电路
- ●短路保护
- ●欠压锁定保护

封装形式



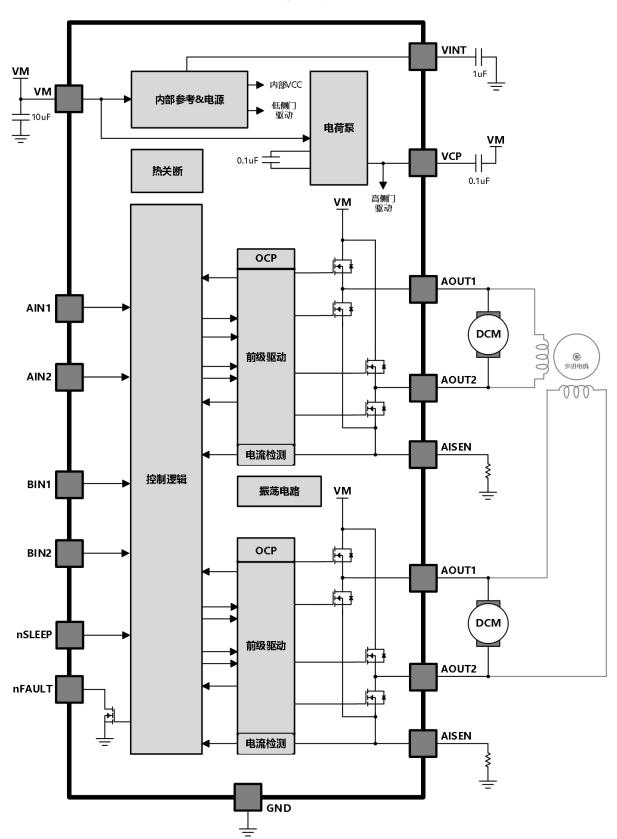
ETSSOP16

OFN16


典型应用原理图

版本更新记录

日期	版本	内容
2017.08	V0.1	初稿拟定
2017.12	V1.0	正式版本
2018.02	V1.1	勘误
2020.03	V1.2	增加包装信息


管脚定义

管脚列表

D 1447370	5 DPP 7 1 4 X								
名称	管脚绑	岩号	 管脚描述	 外部元件或连接					
	ETSSOP	QFN		77.117.3.5.2					
			E	电源与地					
GND	13	11	器件地	 所有地管脚和裸焊盘需连到系统地					
PPAD	-	-	11年1十四	/// 行地 自 JP4 作 体 / 产 血 而 左 玓 永 5 元 地					
VM	12	10	器件电源	电机电源,做好滤波,最小10uF电容到地					
VINT	14	12	内部整流	接一个1uF电容到地					
VCP	11	9	高侧栅极驱动储能	接一个0.1uF电容到VM					
			ŧ	空制输入					
AIN1	16	14	H桥A输入1	逻辑输入,控制AOUT1,内部下拉					
AIN2	15	13	H桥A输入2	逻辑输入,控制AOUT2,内部下拉					
BIN1	9	7	H桥B输入1	逻辑输入,控制BOUT1,内部下拉					
BIN2	10	8	H桥B输入2	逻辑输入,控制BOUT2,内部下拉					
nSLEEP	1	15	休眠模式输入	高电平时芯片正常工作; 低电平时芯片进入休眠低功耗模式					
			k	伏态输出					
nFAULT	8	6	错误输出	当出现过温或过流时,输出低电平,开漏输出,使用需外部上拉					
				输出					
AISEN	3	1	A组检流	A组检流,接检流电阻到地;若不使用检流,直接接地					
BISEN	6	4	B组检流	B组检流,接检流电阻到地;若不使用检流,直接接地					
AOUT1	2	16	H桥A输出1	+ ☆ - h - h - h - h - h - h - h - h - h -					
AOUT2	4	2	H桥A输出2	接电机A组线圈					
BOUT1	7	5	H桥B输出1	+ + + + + + + + + + + + + + + + + + +					
BOUT2	5	3	H桥B输出2	接电机B组线圈					
		1	1	I.					

功能模块框图

电路工作极限 at TA=25°C

参数	符号	测试条件	范围	单位
负载电压	VM		-0.3 – 18	V
最大输出电流	Іоит		±1.2	А
瞬间峰值电流	I _{PEAK}		>2	А
逻辑输入电压	V _{IN}		-0.7 to 7	V
Sense 电压	V _{SENSE}		-0.3 to 0.5	V
工作温度	T _A	Range S	-40 to 85	°C
最大结温	T _J (max)		150	°C
存储温度	T _{stg}		-55 to 150	°C

热阻特性 at TA= 25°C

热计量	ETSSOP	QFN	单位
松竹重	16PINS	16PINS	平位
θ _{JA} - 硅核到环境的热阻系数 ^(*)	44.5	39	°C/W

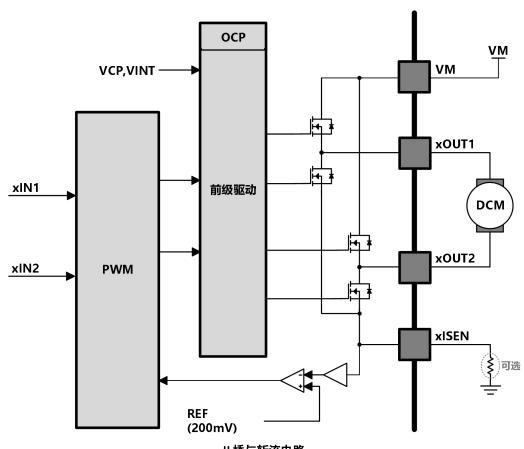
(*)自然对流条件下硅核到环境的热阻系数是通过在 JESD51-7 中所指定的 JEDEC 标准高 K 值电路板上进行仿真模拟获得,环境条件如 JESD51-2a 中所述。

推荐工作条件 at TA=25°C

参数	符号	最小	典型	最大	单位
负载供电电压范围	VM	2.7	-	15	V
逻辑输入电压范围	$V_{ m IN}$	0	-	5.25	V
单路 H 桥 RMS 输出电流	Іоит	0	-	1.0	А

电气特性 at T_A= 25°C, VM= 8V

参数		测试条件	最小	典型	最大	单位		
电源供	ŧ							
I _{VM}	VM 静态电流	xIN1 = 0 V, xIN2 = 0 V	-	-	3.5	mA		
I _{VMQ}	VM 休眠电流		-	-	10	uA		
V_{UVLO}	VM 欠压阈值	VM 下降	-	-	2.5	V		
V _{HYS}	VM 欠压迟滞		-	500	-	mV		
逻辑输	λ	,						
V _{IL}	逻辑输入低电平	nSLEEP	-	-	0.5			
		其他管脚	-	-	0.7	V		
V _{IH}	逻辑输入高电平	nSLEEP	2.5	-	-			
		其他管脚	2	-	-	V		
V _{HYS}	逻辑输入迟滞		-	0.4	-	V		
R _{PD}	输入内部下拉电阻	nSLEEP	- 50		-			
		其他管脚	-	100	-	- kΩ		
I _{IL}	输入低电平电流	V _{IN} = 0 V	-	-	1	uA		
I _{IH}	输入高电平电流	V _{IN} = 3.3 V, nSLEEP	-	6.6	13			
		V _{IN} = 3.3 V, 其他管脚	-	16.5	33	uA		
t _{DEG}	防消抖时间		-	450	-	ns		
nFAULT	输出 (开漏输出)							
V _{OL}	输出低电平	I _O = 5 mA	-	-	0.5	V		
I _{OH}	关断漏电流	V ₀ = 3.3 V	-	-	1	uA		
H桥 FET	rs			1				
	H 桥高侧 FET 导通电阻	VM = 5 V, I _O = 500 mA	-	400	-			
R _{DS(ON)}		VM = 2.7 V, I ₀ = 500 mA	-	450	-			
	H 桥低侧 FET 导通电阻	VM = 5 V, I _O = 500 mA	-	400	-	mΩ		
		VM = 2.7 V, I ₀ = 500 mA	-	450	-			
I _{OFF}	美 断漏电流	VM = 5 V, V _{OUT} = 0 V	-1	-	1	uA		


电机驱	动					
f _{PWM}	电流控制 PWM 频率	内部 PWM 频率	-	50	-	kHz
t _R	输出上升时间	16Ω to GND, 10% to 90%	-	240	-	ns
t _F	输出下降时间	16Ω to GND, 10% to 90%	-	200	-	ns
t _{PROP}	INx to OUTx 延迟		-	0.5	-	us
t _{DEAD}	死区时间		-	200	-	ns
保护电	·····································					
I _{OCP}	过流保护阈值		2.2	-	3	А
t _{DEG}	过流延迟时间		-	1.5	-	us
t _{OCP}	过流保护重启时间		-	1.9	-	ms
t _{TSD}	过温阈值	结温	150	160	180	°C
电流控制	·····································					
V _{TRIP}	xISEN 采样电压		160	200	240	mV
t _{BLANK}	blanking 时间		-	2.4	-	us
休眠模:	 式	·	,			
t _{WAKE}	开启延迟时间	nSLEEP 升高到 H 桥开启	-	0.2	1	ms

模块功能描述

AT8833 为刷式直流电机或者步进电机提供一种集成的驱动方案。芯片内部集成双通道 H 桥和整流电路。 AT8833 的供电范围为 2.7V 到 15V,并提供 1.2A 连续输出。简单的 PWM 接口允许简单的接口控制电路。内部 整流电路的周期时间为 25us。AT8833 还包含一个低功耗睡眠模式,允许不需要驱动芯片的时候节省功耗。

PWM 电机驱动

AT8833 包含两路 H 桥电机驱动电路,使用 PWM 电流控制。下图显示电路功能模块:

H 桥与斩流电路

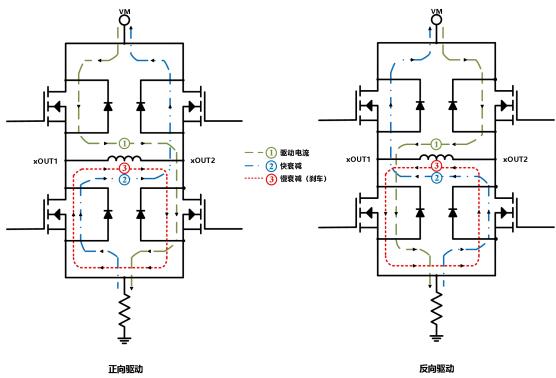
H 桥与衰减模式控制逻辑

输入管脚 AIN1 和 AIN2 控制着输出管脚 AOUT1 和 AOUT2 的状态。类似的,输入管脚 BIN1 和 BIN2 控 制着输出管脚 BOUT1 和 BOUT2 的状态。下表显示了彼此间的逻辑关系。

xIN1	xIN2	xOUT1	xOUT2	功能
0	0	Z	Z	滑行 / 快衰减
0	1	L	Н	反转
1	0	Н	L	正转
1	1	L	L	刹车/ 慢衰减

H 桥控制逻辑

逻辑输入也可以使用 PWM 控制来达到调速功能。当用 PWM 波控制一个桥臂时,并且在驱动电流为关断 时,由于电机的电感特性要求电流连续流通。这个电流叫做续流。为了操作这种电流,H桥可以操作在两种不 同的状态,快衰减或者慢衰减。在快衰减模式,H桥是被禁止的,续流电流流经体二极管;在慢衰减模式,电


机的下臂是短路的。

当 PWM 控制用于快衰模式, PWM 信号控制一个 xIN 管脚, 而另一个管脚维持低电平; 当运用于慢衰减, 另一管脚维持高电平。

xIN1	xIN2	功能
PWM	0	正转 PWM, 快衰减
1	PWM	正转 PWM, 慢衰减
0	PWM	反转 PWM, 快衰减
PWM	1	反转 PWM, 慢衰减

PWM 控制电机速度

下图显示了在不同驱动和衰减模式下的电流通路。

驱动与衰减模式图

电流控制

通过固定频率的 PWM 电流整流器,流过电机驱动桥臂的电流是被限制的或者<u>说</u>是被控制的。在 DC 电机应用中,电流控制功能作用于限制开启电流和停转电流。在步进电机应用中,电流控制功能始终存在。

当一个 H 桥被使能,流过相应桥臂的电流以一个斜率上升,此斜率由直流电压 VM 和电机的电感特性决定。当电流达到设定的阈值,驱动器会关闭此电流,直到下一个 PWM 循环开始。注意,在电流被使能的那一刻,xISEN 管脚上的电压是被忽略的,经过一个固定时间后,电流检测电路才被使能。这个消隐时间一般固定在2.4us。这个消隐时间同时决定了在操作电流衰减时的最小 PWM 时间。

PWM 目标电流由比较器比较连接在 xISEN 管脚上的电流检测电阻上的电压和一个参考电压决定。这个参考电压 V_{TRIP} 一般固定是 200mV。下公式计算目标电流:

$I_{CHOP} = 200 \text{mV} / R_{SX}$

举例: 假如使用了一个 1Ω 的电阻,这时目标电流为 200mA。 注意: 假如电流控制功能不需要使用, xISEN 管脚需直接接地。

nSLEEP 输入逻辑

当驱动 nSLEEP 管脚为低时,会使芯片进入低功耗睡眠模式。在这个状态下,H 桥是被禁止的,电荷泵停止工作,内部所有逻辑被复位,内部所有时钟停止。所有输入被忽略直到 nSLEEP 管脚被拉高。当睡眠模式消除后,需要一些时间(一般 1ms)延时,电机驱动才会正常工作。为了简化板级设计,nSLEEP 管脚可以上拉到 VM。在这种情况下,推荐使用一个上电阻。这个电阻限制输入电流当 VM 大于 6.5V 时。nSLEEP 管脚内部下拉 $500k\Omega$ 电阻到地,同时内部还有一个 6.5V 的齐纳钳位二极管。当电流大于 250uA 时,可能会损坏内部输入结构。因此,推荐上拉电阻阻值一般在 $20k\Omega$ 到 $75k\Omega$ 之间。

保护电路

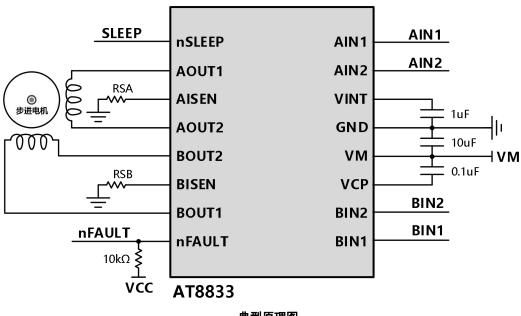
AT8833 有过流保护,过温保护和欠压保护。

过流保护 (OCP)

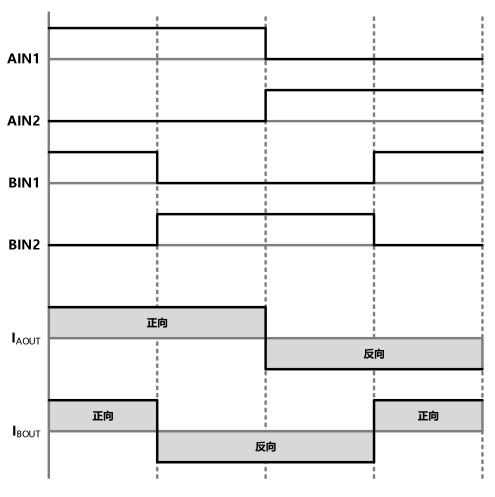
在每一个 FET 上有一个模拟电流限制电路,此电路限制流过 FET 的电流,从而限制门驱动。如果此过流模拟电流维持时间超过 OCP 脉冲时间,H 桥内所有 FET 被禁止,nFAULT 管脚输出低电平。经过一个 OCP 尝试时间(tocp),驱动器会被重新使能,同时 nFAULT 管脚输出高电平。如果这个错误条件仍然存在,上述这个现象重复出现。如果此错误条件消失了,驱动恢复正常工作。注意,只有被检测到过流的 H 桥被会禁止,而其余 H 桥仍是正常工作的。

H 桥上臂和下臂上的过流条件是被独立检测的。对地短路,对 VM 短路,和输出之间短路,都会造成过流关闭。注意,过流保护不使用 PWM 电流控制的电流检测电路,所以过流保护功能不作用与 xISEN 电阻。

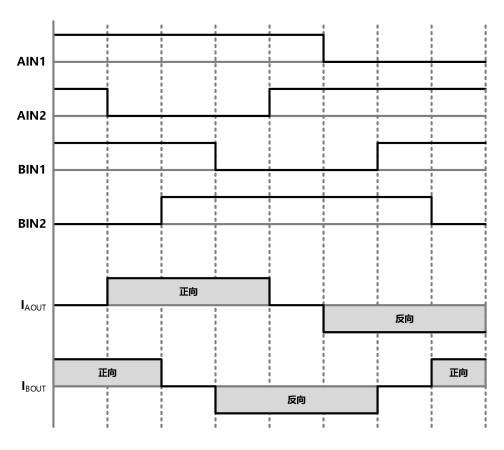
过温保护 (TSD)


如果结温超过安全限制阈值,H 桥的作用 FET 被禁止,nFAULT 管脚输出低电平。一旦结温降到一个安全水平,所有操作会自动恢复正常。

欠压锁定保护(UVLO)


在任何时候,如果 VM 管脚上的电压降到低于欠压锁定阈值,内部所有电路会被禁止,内部所有复位。当 VM 上的电压上升到 UVLO 以上,所有功能自动恢复。nFAULT 管脚输出低电平当欠压情况出现时。

电路应用信息


双极步进电机模式

典型原理图

整步控制时序

半步控制时序

版图注意事项

PCB 板上应覆设大块的散热片,地线的连接应有很宽的地线覆线。为了优化电路的电特性和热参数性能,芯片应该直接紧贴在散热片上。

对电极电源 VM,应该连接不小于 10uF 的电解电容对地耦合,电容应尽可能的靠近器件摆放。

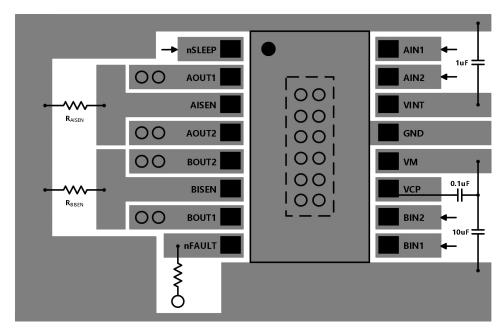
为了避免因高速 dv/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。

地线设置

芯片所有的地线都应连接在一起,且连线还应改尽可能的短。一个位于器件下的星状发散的地线覆设,将是一个优化的设计。

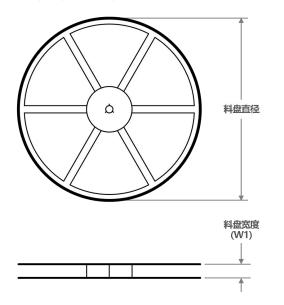
在覆设的地线下方增加一个铜散热片会更好的优化电路性能。

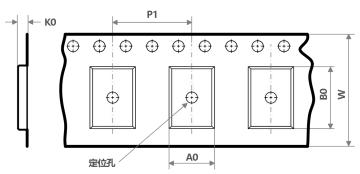
电流取样设置


为了减小因为地线上的寄生电阻引起的误差,马达电流的取样电阻 R_s 接地的地线要单独设置,减小其他因素引起的误差。单独的地线最终要连接到星状分布的地线总线上,该连线要尽可能的短,对小阻值的 R_s ,由于 R_s 上的压降 $V = I \times R_s$ 为 0.2V,PCB 上的连线压降与 0.2V 的 电压将显得不可忽视,这一点要考虑进去。

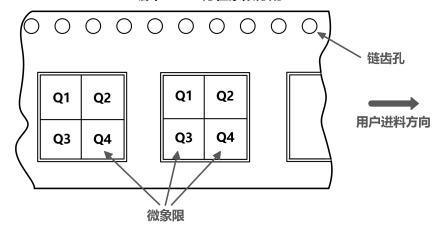
PCB 尽量避免使用测试转接插座,测试插座的连接电阻可能会改变 Rs 的大小,对电路造成误差。Rs 值的选择遵循下列公式:

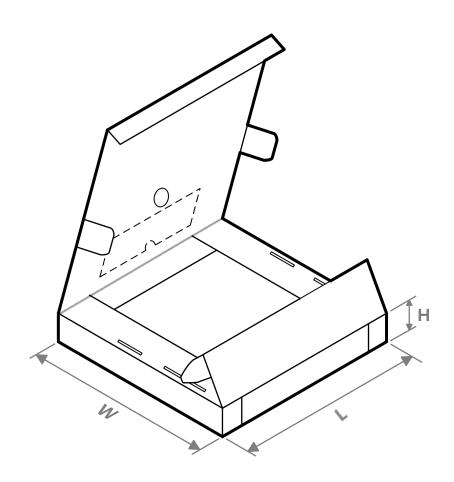
$$R_S = 0.2 / I_{TRIPmax}$$


热保护


当内部电路结温超过 160℃时,过温模块开始工作,关断内部多有驱动电路。过温保护电路只保护电路温度过高产生的问题,而不应对输出短路的情况产生影响。热关断的阈值窗口大小为 45℃。

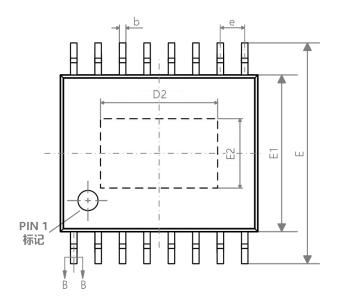
典型 PCB 布局图

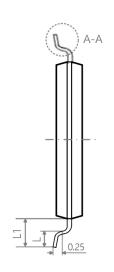

编带料盘信息

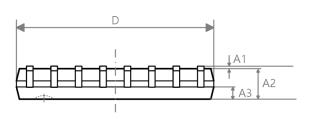

Α0	料槽宽度				
В0	料槽长度				
K0	料槽厚度				
W	载带整体宽度				
P1	相邻槽中心间距				

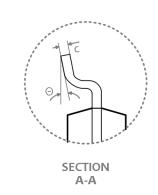
编带 PIN1 方位象限分配

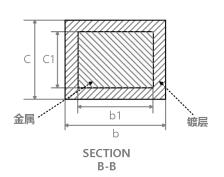
器件	封装 类型	封装标识	管脚 数	SPQ	料盘 直径 (mm)	料盘 宽度 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 象限
AT8833CT	ETSSOP	СТ	16	3000	330	12	7.50	6.00	1.50	8	12	Q1
AT8833CQ	QFN	CQ	16	5000	330	12	4.45	4.45	1.2	8	12	Q2
AT8833CR	QFN	CR	16	5000	330	12	3.3	3.3	1.05	8	12	Q2

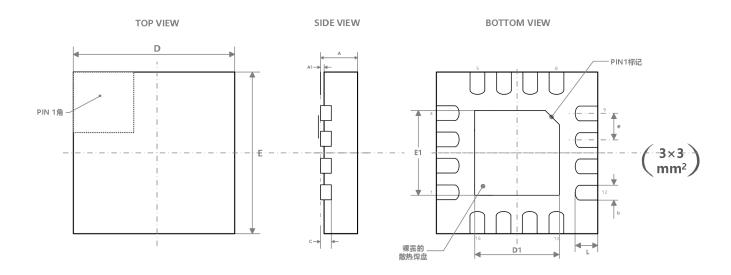

编带料盘包装尺寸




器件	封装类型	封装标识	管脚数	SPQ	长度(mm)	宽度(mm)	高度(mm)
AT8833CT	ETSSOP	СТ	16	3000	360	360	65
AT8833CQ	QFN	CQ	16	5000	365	365	70
AT8833CR	QFN	CR	16	5000	360	360	65


封装信息


ETSSOP16



符号	毫米(mm)					
10 5	MIN	NOM	MAX			
А	-	-	1.20			
A1	0.90	1.00	1.05			
A3	0.39	0.44	0.49			
b	0.20	1	0.30			
b1	0.19	0.22	0.25			
С	0.13	1	0.19			
c1	0.12	0.13	0.14			
D	4.86	4.96	5.06			
D2	2.90	3.00	3.10			
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
E2	2.20	2.30	2.40			
е	0.65BSC					
L	0.45	-	0.75			
L1	1.00BSC					
θ	0	-	8°			

QFN16

	QFN16(4*4mm)	QFN16(3*3mm)		
符号	毫米((mm)	毫米(mm)		
	MIN	MAX	MIN	MAX	
D	3.90	4.10	2.90	3.10	
D1	2.10	2.30	1.55	1.75	
E	3.90	4.10	2.90	3.10	
b	0.25	0.300	0.18	0.30	
С	0.090	0.35	0.18	0.25	
E1	2.10	2.30	1.55	1.75	
L	0.45	0.65	0.35	0.45	
Α	-	0.80	-	0.80	
A1		0.05	0.031	0.039	
е	0.650	(BSC)	0.50(BSC)		
Н	0.30	0.40	0.20	0.30	