

描述

HR8825是一种内置步进表的集成微步进电机驱动器,为打印机、扫描仪和其它自动化设备提供解决方案。其设计为能使双极步进电机以全、半、1/4、1/8、1/16、1/32步进模式工作。步进模式由逻辑输入MODEx选择。输出驱动能力达到38V和±2.5A。HR8825的衰减模式可编程。

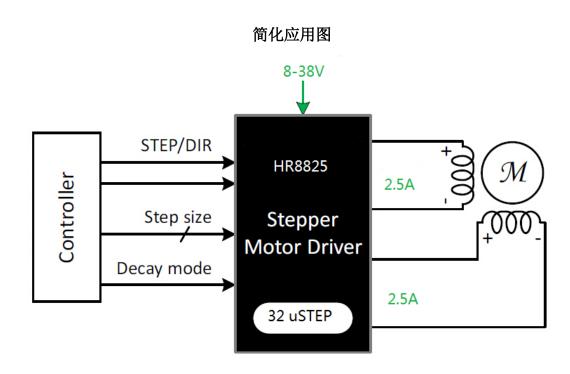
译码器是HR8825易于实施的关键。通过STEP简单的输入一个脉冲就可以使电机完成一次步进,省去了相序表,高频控制线及复杂的编程接口。这使其更适于在没有复杂的微处理器或微处理器负担过重的场合。

内部的同步整流控制电路改善了PWM操作时的功耗。内部保护电路包括:带迟滞额过热保护、欠压锁定及过流保护。不需要特别的上电时序。

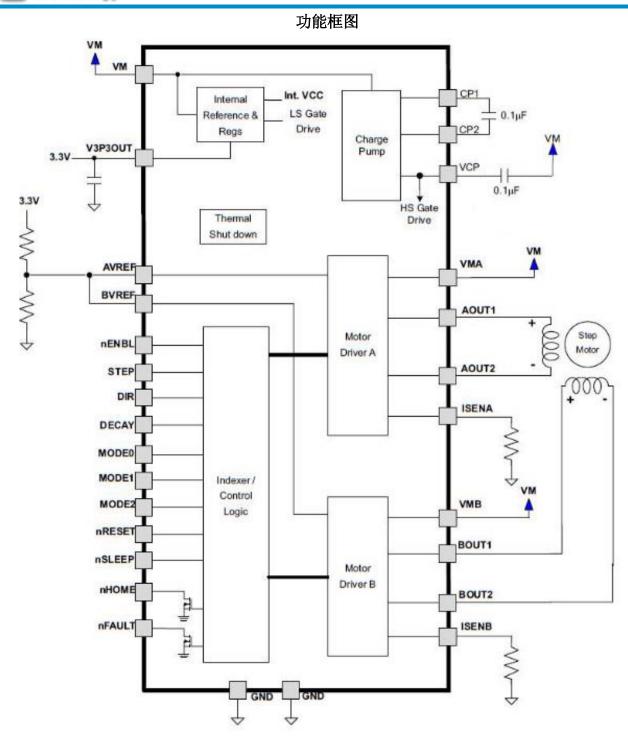
HR8825提供一种带有裸露焊盘的TSSOP-28封装,能有效改善散热性能,且是无铅产品,引脚框采用100%无锡电镀。

型号选择

型号	封装	包装	数量
HR8825	TSSOP28	料管	30 片/管


特点

- ●低导通电阻R_{DS(ON)}
- ●内置微步进相序表
- ●支持混合衰减模式
- ●8V-38V供电, 2.5A输出能力
- ●内部欠压锁定
- ●过流保护
- ●过热关断电路
- ●内置3.3V参考电压输出
- ●六种步进模式,最高支持32细分


封装形式

28 lead TSSOP with exposed thermal pad

电路工作极限 at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Load Supply Voltage	VM		-0.3 to 40	V
Output Current	I _{OUT}		±2.5	A
Logic Input voltage	V _{IN}		-0.3 to 7	V
Sense Voltage	Vsense		-0.5 to 0.8	V
Reference Voltage	V _{REF}		-0.3 to 4	V
Operating Ambient Temperature	TA	Range S	-20 to 85	°C
Maximum Junction	T _J (max)		150	°C
Storage Temperature	T_{stg}		-55 to 150	°C

推荐工作条件

		MIN	NOM	MAX	UNIT
VM	Motor power supply voltage(1)	8		38	V
VREF	VREF input voltage(2)	1		3.5	V
IV3P3	V3P3OUT load current			1	mA

- (1) 所有VM管脚必须连接到同一个供电电源。
- (2) 当 VREF 上的电压为 0V 至 1V 区间,其工作精度是不保证的。

使用注意:

1、电流配置:

 $I_{\text{Trip MAX}} = VREF / (5 \times Rs),$

在大电流应用当中,PCB 布局上,尽量使 ISENx 管脚到检流电阻的路径短且粗,建议 PCB 2oz 铜制作。 若此线太细且长,实际电流需计算此 PCB 布线的电阻。

大电流应用, 需充分考虑散热, 避免芯片过早发生过温。

2、DECAY 配置:

DECAY 接地:输出电流上升慢衰,下降混合衰,衰减时间约为25us.

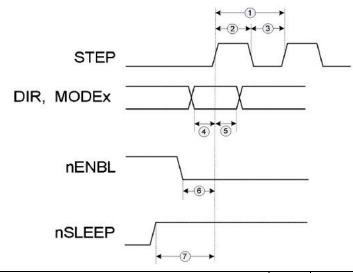
DECAY 悬空:输出电流全混合衰,衰减时间约为 25us.

衰减时间改变:为适应不同的电机和电压应用,客户可根据自身情况,在 DECAY 管脚外接下拉电阻,来减小衰减时间。DECAY 内置下拉 22k 电阻。建议外部电阻 22k-100k 之间。

3、工作配置:

	逻辑输入		输出
SLEEP	RESET	EN	
L	X	X	Z,休眠
Н	L	X	Z,复位
Н	Н	Н	Z,输出关闭
Н	Н	L	EN,输出使能

X 代表任意电平, Z 表示高阻


电特性 at Ta = 25°C, VM=24 V

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
POWER SUPPLIES	-					_
功率电源	VM	Operating	8		38	V
功率电源欠压	Vuvlo	VM rising		7	7.5	V
输出导通电阻		Source Driver,I _{OUT} =-1A		200		mΩ
	R _{DS(ON)}	Sink Driver, Iout=1A		200		mΩ
功率电源静态电流		f _{PWM} <50kHz		7	10	mA
	I_{VM}	SLEEP		10	20	uA
V3P3OUT REGUL	ATOR					•
V3P3 输出电压	V3P3	IOUT = 0 to 1 mA	3.1	3.3	3.5	V
Control Logic				•	•	
逻辑输入电平	$V_{IN(1)}$		2		5.25	V
	V _{IN(0)}			0.6	0.7	V
逻辑输入迟滞	VHYS			0.45		V
逻辑输入电流	I _{IN(1)}	V _{IN} =3.3V			100	uA
	I _{IN(0)}	V _{IN} =0V	-20		20	uA
逻辑输入内部下拉电阻	RPD	nENBL, nRESET, DIR, STEP, MODEx	-	100	-	ΚΩ
	KYD	nSLEEP	-	1	-	ΜΩ
nHOME, nFAULT	OUTPUTS	(OPEN-DRAIN OUTPUTS)				
输出电压	VOL	IO = 5 mA			0.5	V
输出漏电流	ЮН	VO = 3.3 V			1	uA
DECAY						
		悬空,全混合衰		25		us
衰减时间	tOFF	外接56k下拉电阻,全混合衰		18		us
		接地,电流上升慢衰,下降混合衰		25		us
内部下拉电阻	RPD			22		ΚΩ
MOTOR DRIVER						
内部 PWM 频率	fPWM			50		KHz
消隐时间	tBLANK			1.75		us
上升时间	tR		70		200	ns
下降时间	tF		60		180	ns
死区时间	tDEAD			400		ns
Protection				T.	1	
过流阈值	I _{OCPST}		3.8		4.5	A
过温阈值	T _{TSD}		150	160	180	°C
过温迟滞	Ttsdhys			15		°C
CURRENT CONTI	ROL					
xVREF input current	IREF	xVREF = 3.3 V	-3		3	uA
xISENSE trip voltage	VTRIP	xVREF = 3.3 V, 100% current setting	635	660	685	mV
Current trip accuracy		xVREF = 3.3 V, 5% current setting	-20		20	
(relative to programmed value)	ΔITRIP	xVREF = 3.3 V, $10% - 34%$ current setting	-15		15	%
	ZI I KII	xVREF = 3.3 V, 38% - 67% current setting	-10		10	/0
		xVREF = 3.3 V , 71% - 100% current	-5		5	

Current sense amplifier gain	AISENSE	Reference only	5	V/V

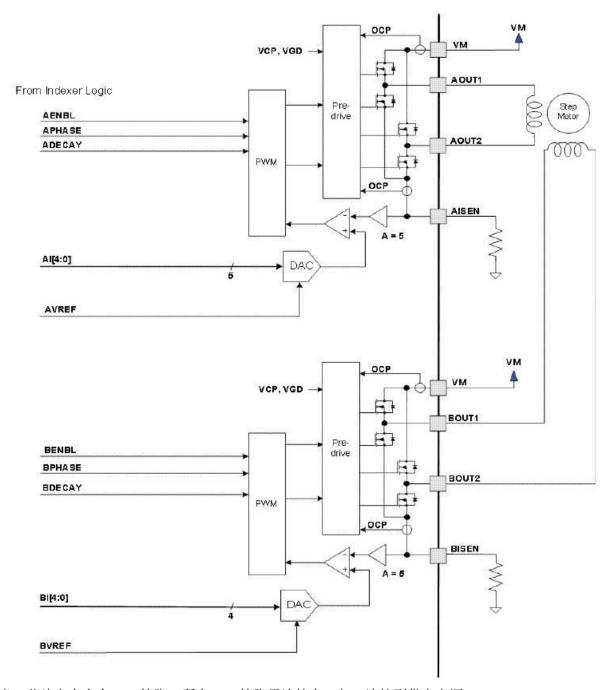
电路控制信号时序上的要求:

			MIN	MAX	UNIT
1	fSTEP	Step frequency		250	KHz
2	tWH(STEP)	Pulse duration, STEP high	1.9		us
3	tWL(STEP)	Pulse duration, STEP low	1.9		us
4	tSU(STEP)	Setup time, command to STEP rising	200		ns
5	tH(STEP)	Hold time, command to STEP rising	200		ns
6	tENBL	Enable time, nENBL active to STEP	200		ns
7	tWAKE	Wakeup time, nSLEEP inactive to STEP	1		ms

微步进真值表

MODE2	MODE1	MODE0	Microstep Resolution
0	0	0	整步
0	0	1	2细分
0	1	0	4细分
0	1	1	8细分
1	0	0	16细分
1	0	1	
1	1	0	32 细分
1	1	1	

模块功能描述


HR8825 双极步进电机提供集成驱动方案,内置两路 NMOS H 桥,电流检测和整流电路,微步进相序表。HR8825 供电范围从 8V 至 38,提供 2.5A 最大电流输出。

简单的 STEP/DIR 接口简化了控制电路,内置微步进相序表可以实现高细分模式。电流整流是可编程的,可实现混合衰减模式。

低功耗睡眠模式允许系统节省功耗当电机不需要驱动的时候。

PWM Motor Drivers

HR8825 包含两路使用 PWM 电流控制的 H 桥电机驱动电路。下图显示电路功能模块:

注意:芯片上有多个 VM 管脚,所有 VM 管脚需连接在一起,连接到供电电源。

Current Regulation

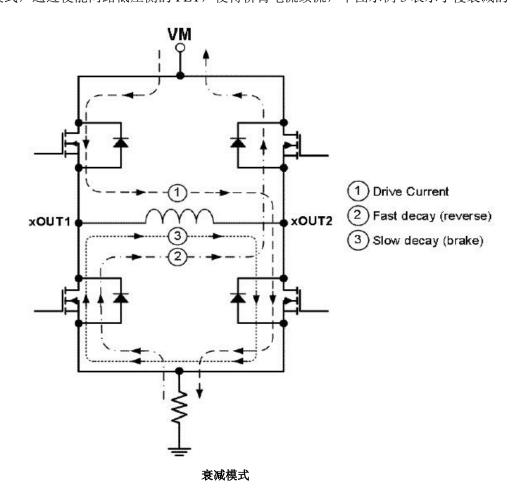
通过固定频率的 PWM 电流整流器,流过电机驱动桥臂的电流是被限制的或者是被控制的。当一个 H 桥被使能,流过相应桥臂的电流以一个斜率上升,此斜率由直流电压 VM 和电机的电感特性决定。当电流达到设定的阈值,驱动器会关闭此电流,直到下一个 PWM 循环开始。

在步进过程中,电流整流电路使得流过两个桥臂的电流呈现半正弦的方式变化,这样使得电机能圆滑的转动。PWM 目标电流由比较器比较连接在 xISEN 管脚上的电流检测电阻上的电压除以一个除数因子(5)的值和一个参考电压决定。参考电压是 xVREF 管脚上的输入电压。

100% 斩波电流计算如下:

$$I_{CHOP} = \frac{V_{REFX}}{5 \cdot R_{ISENSE}}$$

举个例子: 假如使用了一个 0.5Ω 的电阻,xVREF 上的电压为 3.3V,这样 100% 斩波电流为 1.32A。 参考电压通过内部 DAC 来衡量,这样可实现步进电机的微细分。


Decay Modes

在 PWM 电流整流期间,H 桥被使能,这样驱动流过电机桥臂的电流直到 PWM 斩波电流阈值达到。电流路径在下图的示例 1 中描述。图中描述的电流方向定义为正向。

一旦 PWM 斩波电流阈值达到, H 桥可以工作在两种不同的状态, 快衰或者慢衰。

在快衰减模式,一旦 PWM 斩波电流阈值达到, H 桥反转输出状态,使得桥臂电流反方向流通。当桥臂电流接近 0 时, H 桥被禁止,这样防止反向电流流通。快衰减电流路径在下图的示例 2 表示。

在慢衰减模式,通过使能两路低压侧的 FET,使得桥臂电流续流,下图示例 3 表示了慢衰减的电流路径。

HR8825 支持混合衰减,可由 DECAY 的输入状态决定输出方式: DECAY 接地选择电流上升慢衰,下降混合衰; 悬空或者接高选择全混合衰。DEACY 管脚内置 22KΩ 的下拉电阻。所以当 DECAY 管脚开路或者不使用时,默认的衰减方式是全混合衰减。

在混合衰减模式,开始是快衰减,经过一段固定关闭时间(PWM 周期的 33%),开启慢衰减,直至 PWM 周期结束。

Blanking Time

在电流被使能的那一刻, xISEN 管脚上的电压是被忽略的, 经过一个固定时间后, 电流检测电路才被使能。这个消隐时间一般固定在 1.75us。这个消隐时间同时决定了在操作电流衰减时的最小 PWM 时间。

nRESET, nENBLE and nSLEEP Operation

nRESET 管脚输入低电平时,芯片复位内部逻辑,复位微步进相序表至 HOME 状态,同时禁止 H 桥, STEP 上的逻辑输入是被忽略的。

nENBL 管脚用来控制输出和使能/禁能微步进相序表的操作。当 nENBL 输入低电平, H 桥输出使能, STEP上的上升沿被识别。当 nENBL 输入高电平, H 桥被禁止,输出是高阻状态, STEP输入被忽略。

nSLEEP 管脚输入为低电平时,器件将进入休眠模式,从而大大降低器件空闲的功耗。进入休眠模式后,器件的 H 桥被禁止,电荷泵电路停止工作,V3P3 输出被禁止,同时内部所有时钟也是停止工作的,所有的逻辑输入都被忽略。当其输入翻转为高电平时,系统恢复到正常的操作状态并将器件的输出预置到 HOME 状态,为了内部电荷泵恢复稳定工作,在 SLEEP 恢复高电平并延时 1ms 后 STEP 信号才能起作用。

nRESET 和 nENABLE 内置 100KΩ 的下拉电阻, nSLEEP 内置 $1M\Omega$ 下拉电阻。

Protection Circuits

HR8825 有过流保护,过温保护和欠压保护。

Overcurrent Protection (OCP)

在每一个 FET 上有一个模拟电流限制电路,此电路限制流过 FET 的电流,从而限制门驱动。如果此过流模拟电流维持时间超过 OCP 脉冲时间,H 桥内所有 FET 被禁止,nFAULT 管脚输出低电平。

H 桥上臂和下臂上的过流条件是被独立检测的。对地短路,对 VM 短路,和输出之间短路,都会造成过流关闭。注意,过流保护不使用 PWM 电流控制的电流检测电路,所以过流保护功能不作用与 xISEN 电阻。

Thermal Shutdown (TSD)

如果结温超过安全限制阈值,H 桥的作用 FET 被禁止,nFAULT 管脚输出低电平。一旦结温降到一个安全水平,所有操作会自动恢复正常。

Undervoltage Lockout (UVLO)

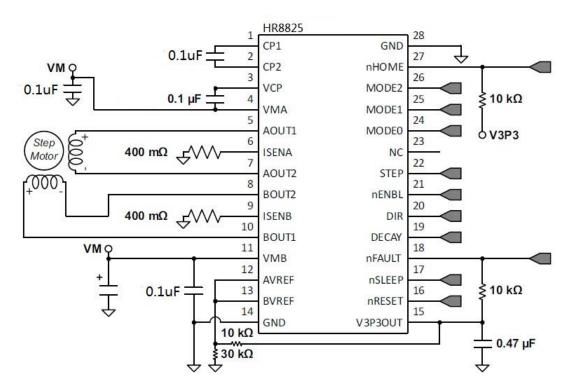
在任何时候,如果 VM 管脚上的电压降到低于欠压锁定阈值,内部所有电路会被禁止,内部所有复位。当 VM 上的电压上升到 UVLO 以上,所有功能自动恢复。

电路应用信息

版图注意事项: PCB 板上应覆设大块的散热片,地线的连接应有很宽的地线覆线。为了优化电路的电特性和热参数性能,芯片应该直接紧贴在散热片上。

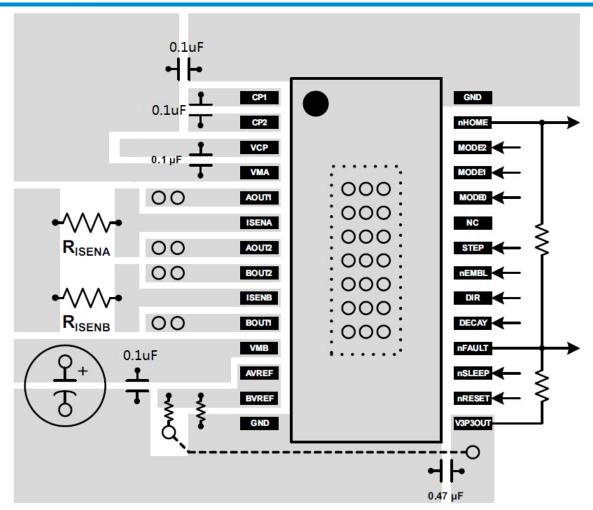
对电机电源 VM,应该连接不小于 100uF 的电解电容对地耦合,电容应尽可能的靠近器件摆放。

为了避免因高速 dv/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。


地线设置: AGND 和 PGND 的连线必须在芯片外部短接。所有的地线都应连接在一起,且连线还应改尽可能的短。一个位于器件下的星状发散的地线覆设,将是一个优化的设计。

在覆设的地线下方增加一个铜散热片会更好的优化电路性能。

电流取样设置: 为了减小因为地线上的寄生电阻引起的误差,电机电流的取样电阻 RS 接地的地线要单独设置,减小其他因素引起的误差。单独的地线最终要连接到星状分布的地线总线上,该连线要尽可能的短,对小阻值的 Rs,由于 Rs 上的压降 V=I*Rs 小于 0.5V,PCB 上的连线压降与 0.5V 的 电压将显得不可忽视,这一点要考虑进去。


PCB 尽量避免使用测试转接插座,测试插座的连接电阻可能会改变 Rs 的大小,对电路造成误差。Rs 值的选择遵循下列公式:

 $Rs = 0.5/I_{TRIP\ max}$

典型应用原理图

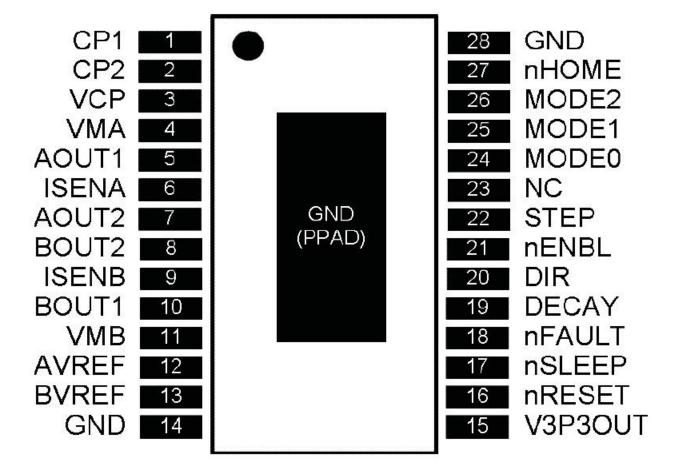
典型参考布局

微步进相序表

Home microstep position at Step Angle 45°; DIR = H

1/32	1/16	1/8	1/4	1/2	full	Current A(%)	Current B(%)	Step Angle(°)
1	1	1	1	1		100.0	0.0	0.00
2						99.9	4.9	2.81
3	2					99.5	9.8	5.63
4						98.9	14.7	8.44
5	3	2				98.1	19.5	11.25
6						97.0	24.3	14.06
7	4					95.7	29.0	16.88
8						94.2	33.7	19.69
9	5	3	2			92.4	38.3	22.50
10						90.4	42.8	25.31
11	6					88.2	47.1	28.13
12						85.8	51.4	30.94
13	7	4				83.1	55.6	33.75
14						80.3	59.6	36.56
15	8					77.3	63.4	39.38
16						74.1	67.2	42.19
17	9	5	3	2	1	70.7	70.7	45.00
18						67.2	74.1	47.81
19	10					63.4	77.3	50.63
20						59.6	80.3	53.44
21	11	6				55.6	83.1	56.25
22						51.4	85.8	59.06
23	12					47.1	88.2	61.88
24						42.8	90.4	64.69
25	13	7	4			38.3	92.4	67.50
26						33.7	94.2	70.31
27	14					29.0	95.7	73.13
28						24.3	97.0	75.94
29	15	8				19.5	98.1	78.75
30						14.7	98.9	81.56
31	16					9.8	99.5	84.38
32						4.9	99.9	87.19
33	17	9	5	3		0.0	100.0	90.00
34						-4.9	99.9	92.81
35	18					-9.8	99.5	95.63
36						-14.7	98.9	98.44
37	19	10				-19.5	98.1	101.25
38						-24.3	97.0	104.06
39	20					-29.0	95.7	106.88
40						-33.7	94.2	109.69

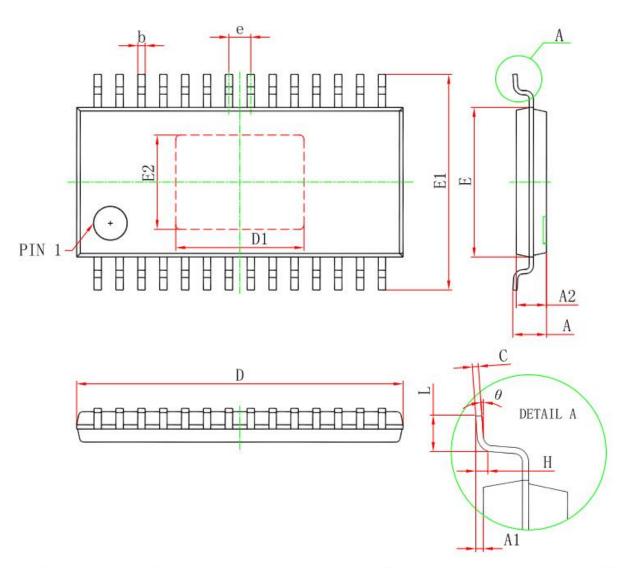
	2.9						<u> </u>	
41	21	11	6			-38.3	92.4	112.50
42						-42.8	90.4	115.31
43	22					-47.1	88.2	118.13
44						-51.4	85.8	120.94
45	23	12				-55.6	83.1	123.75
46						-59.6	80.3	126.56
47	24					-63.4	77.3	129.38
48						-67.2	74.1	132.19
49	25	13	7	4	2	-70.7	70.7	135.00
50						-74.1	67.2	137.81
51	26					-77.3	63.4	140.63
52						-80.3	59.6	143.44
53	27	14				-83.1	55.6	146.25
54						-85.8	51.4	149.06
55	28					-88.2	47.1	151.88
56						-90.4	42.8	154.69
57	29	15	8			-92.4	38.3	157.50
58						-94.2	33.7	160.31
59	30					-95.7	29.0	163.13
60						-97.0	24.3	165.94
61	31	16				-98.1	19.5	168.75
62						-98.9	14.7	171.56
63	32					-99.5	9.8	174.38
64						-99.9	4.9	177.19
65	33	17	9	5		-100.0	0.0	180.00
66						-99.9	-4.9	182.81
67	34					-99.5	-9.8	185.63
68						-98.9	-14.7	188.44
69	35	18				-98.1	-19.5	191.25
70						-97.0	-24.3	194.06
71	36					-95.7	-29.0	196.88
72						-94.2	-33.7	199.69
73	37	19	10			-92.4	-38.3	202.50
74						-90.4	-42.8	205.31
75	38					-88.2	-47.1	208.13
76						-85.8	-51.4	210.94
77	39	20				-83.1	-55.6	213.75
78						-80.3	-59.6	216.56
79	40					-77.3	-63.4	219.38
80						-74.1	-67.2	222.19
81	41	21	11	6	3	-70.7	-70.7	225.00
82						-67.2	-74.1	227.81
83	42					-63.4	-77.3	230.63
84						-59.6	-80.3	233.44



85 43 22 -55.6 -83.1 236.25 86 -51.4 -85.8 239.06 87 44 -47.1 -88.2 241.88 88 -42.8 -90.4 244.69 89 45 23 12 -38.3 -92.4 247.50 90 -33.7 -94.2 250.31 -91 46 -29.0 -95.7 253.13 92 -24.3 -97.0 255.94 -97.0 255.94 93 47 24 -19.5 -98.1 258.75 94 -14.7 -98.9 261.56 -98 95 48 -9.8 -99.5 264.38 96 -4.9 -99.9 267.19 -97 97 49 25 13 7 0.0 -100.0 270.00 98 -4.9 -99.9 272.81 -99.5 278.43 100 14.7 -98.9 278.44 -92.25		2.9						.	
87 44 -47.1 -88.2 241.88 88 -42.8 -90.4 244.69 89 45 23 12 -38.3 -92.4 247.50 90 -33.7 -94.2 250.31 91 46 -29.0 -95.7 253.13 92 -24.3 -97.0 255.94 255.94 -9.8 -99.0 255.75 253.13 258.75 94 -14.7 -98.9 261.56 95.4 -14.7 -98.9 261.56 95.4 48 -9.8 -99.5 264.38 96. 264.38 -4.9 -99.9 267.19 97.49 25 13 7 0.0 -100.0 270.00 98 -4.9 -99.9 267.19 99.9 267.19 99.9 267.19 99.9 267.19 99.9 267.19 99.9 267.19 99.9 272.81 99.9 295.00 90.00 99.9 272.81 99.9 272.81 99.9 295.63 190.00 99.9	85	43	22				-55.6	-83.1	236.25
88 -42.8 -90.4 244.69 89 45 23 12 -38.3 -92.4 247.50 90 -33.7 -94.2 250.31 91 46 -29.0 -95.7 253.13 92 -24.3 -97.0 255.94 93 47 24 -19.5 -98.1 258.75 94 -14.7 -98.9 261.56 95 48 -9.8 -99.5 264.38 96 -4.9 -99.9 267.19 97 49 25 13 7 0.0 -100.0 270.00 98 -4.9 -99.9 267.19 97 49 25 13 7 0.0 -100.0 270.00 284.38 99.9 295.19 278.61 19.5 -98.1 281.25 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 103 52 <t< td=""><td>86</td><td></td><td></td><td></td><td></td><td></td><td>-51.4</td><td>-85.8</td><td>239.06</td></t<>	86						-51.4	-85.8	239.06
89 45 23 12 -38.3 -92.4 247.50 90 -33.7 -94.2 250.31 91 46 -29.0 -95.7 253.13 92 -24.3 -97.0 255.94 93 47 24 -19.5 -98.1 258.75 94 -14.7 -98.9 261.56 264.38 96 -4.9 -99.5 264.38 296.5 264.38 96 -4.9 -99.9 267.19 270.00 270.00 28 96 -4.9 -99.9 267.19 270.00 290.0 295.5 2264.38 296.19 299.9 272.81 299.9 299.9 272.81 299.9 272.81 299.9 272.81 299.9 272.81 299.5 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 103 32 29.0 -95.7 <td>87</td> <td>44</td> <td></td> <td></td> <td></td> <td></td> <td>-47.1</td> <td>-88.2</td> <td>241.88</td>	87	44					-47.1	-88.2	241.88
90 -33.7 -94.2 250.31 91 46 -29.0 -95.7 253.13 92 -24.3 -97.0 255.94 93 47 24 -19.5 -98.1 258.75 94 -14.7 -98.9 261.56 95 95 48 -9.8 -99.5 264.38 96 -4.9 -99.9 267.19 97 49 25 13 7 0.0 -100.0 270.00 98 4.9 -99.9 267.19 99 50 9.8 -99.5 264.38 100 14.7 -98.9 272.81 99.9 272.81 99 50 9.8 -99.5 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 295.7 286.88 103 52 29.0 -	88						-42.8	-90.4	244.69
91 46 -29.0 -95.7 253.13 92 -24.3 -97.0 255.94 93 47 24 -19.5 -98.1 258.75 94 -14.7 -98.9 261.56 95 48 -9.8 -99.5 264.38 96 -4.9 -99.9 267.19 97 49 25 13 7 0.0 -100.0 270.00 98 -4.9 -99.9 267.19 272.81 99 50 9.8 -99.5 275.63 100 14.7 -98.9 272.81 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 281.25 103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.	89	45	23	12			-38.3	-92.4	247.50
92 -24.3 -97.0 255.94 93 47 24 -19.5 -98.1 258.75 94 -14.7 -98.9 261.56 95 48 -9.8 -99.5 264.38 96 -4.9 -99.9 267.19 97 49 25 13 7 0.0 -100.0 270.00 98 4.9 -99.9 272.81 98. -99.5 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 281.25 29.0 -95.7 286.88 104 33.7 -94.2 289.69 295.0 295.7 286.88 104 33.7 -94.2 289.69 295.0 295.7 286.88 30.94 105 53 27 14 38.3 -92.4 292.50 295.31 106 42.8	90						-33.7	-94.2	250.31
93 47 24 -19.5 -98.1 258.75 94 -14.7 -98.9 261.56 95 48 -9.8 -99.5 264.38 96 -4.9 -99.9 267.19 97 49 25 13 7 0.0 -100.0 270.00 98 -4.9 -99.9 272.81 99.9 272.81 99 50 9.8 -99.5 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 281.25 103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 295.31 295.31 309.34 309.34 309.34 309.34 309.34 309.3	91	46					-29.0	-95.7	253.13
94 -14.7 -98.9 261.56 95 48 -9.8 -99.5 264.38 96 -4.9 -99.9 267.19 97 49 25 13 7 0.0 -100.0 270.00 98 4.9 -99.9 272.81 -99.9 275.63 100 14.7 -98.9 278.44 -91.0 284.06 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 -95.7 286.88 104 33.7 -94.2 289.69 -95.7 286.88 104 33.7 -94.2 289.69 -95.7 286.88 104 33.7 -94.2 289.69 -95.7 286.88 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 -97.0 284.68 107 54 47.1 -88.2 <	92						-24.3	-97.0	255.94
95 48 -9.8 -99.5 264.38 96 -4.9 -99.9 267.19 97 49 25 13 7 0.0 -100.0 270.00 98 4.9 -99.9 272.81 99.8 -99.5 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 284.06 29.0 -95.7 286.88 104 33.7 -94.2 289.69 295.0 106 295.7 286.88 105 53 27 14 38.3 -92.4 292.50 295.0 106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 107 54 47.1 -88.2 298.13 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.	93	47	24				-19.5	-98.1	258.75
96 -4.9 -99.9 267.19 97 49 25 13 7 0.0 -100.0 270.00 98 4.9 -99.9 272.81 99 50 9.8 -99.5 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 284.06 103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 90.4 295.31 106 42.8 90.4 295.31 107 54 47.1 -88.2 298.13 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 30	94						-14.7	-98.9	261.56
97 49 25 13 7 0.0 -100.0 270.00 98 4.9 -99.9 272.81 99 50 9.8 -99.5 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 284.06 103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 295.31 296.9 295.31 298.13 108 51.4 -85.8 300.94 295.31 303.75 298.13 108 51.4 -85.8 300.94 295.31 303.75 110 59.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38	95	48					-9.8	-99.5	264.38
98 4.9 -99.9 272.81 99 50 9.8 -99.5 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 <t< td=""><td>96</td><td></td><td></td><td></td><td></td><td></td><td>-4.9</td><td>-99.9</td><td>267.19</td></t<>	96						-4.9	-99.9	267.19
99 50 9.8 -99.5 275.63 100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 115 58 77.3	97	49	25	13	7		0.0	-100.0	270.00
100 14.7 -98.9 278.44 101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 284.06 103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 295.31 108 51.4 -85.8 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 115 58 77.3 -63.4 <td< td=""><td>98</td><td></td><td></td><td></td><td></td><td></td><td>4.9</td><td>-99.9</td><td>272.81</td></td<>	98						4.9	-99.9	272.81
101 51 26 19.5 -98.1 281.25 102 24.3 -97.0 284.06 103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 303.75 309.38 110 59.6 -80.3 306.56 301.37 110 59.6 -80.3 306.56 301.37 111 56 63.4 -77.3 309.38 302.19 112 67.2 -74.1 312.19 313.00 314.1 315.00 114 74.1 -67.2 317.81 315.00 317.81 315.00 114 74.1 -67.2 317.81 326.25 318.1 356.6 322.44 320.63	99	50					9.8	-99.5	275.63
102 24.3 -97.0 284.06 103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 115 58 77.3 -63.4 320.63 115.00 114 74.1 -67.2 317.81 115 58 77.3 -63.4 320.63 116.00 80.3 -59.6 323.44 117 59	100						14.7	-98.9	278.44
103 52 29.0 -95.7 286.88 104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 309.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 115 58 77.3 -63.4 320.63 316.91 115 58 77.3 -63.4 320.63 326.25 118 85.8 -51.4 329.06 323.44 117 59 30 83.1 -55.6 326.25 118 90.4 -42.8	101	51	26				19.5	-98.1	281.25
104 33.7 -94.2 289.69 105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 115 58 77.3 -63.4 320.63 316.0 323.44 117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50	102						24.3	-97.0	284.06
105 53 27 14 38.3 -92.4 292.50 106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 315.00 317.81 315.00 114 74.1 -67.2 317.81 315.00 323.44 115 58 77.3 -63.4 320.63 116 80.3 -59.6 323.44 117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 119 60 88.2 -47.1	103	52					29.0	-95.7	286.88
106 42.8 -90.4 295.31 107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 315.00 317.81 320.63 116 80.3 -59.6 323.44 320.63 323.44 117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 323.44 117 59 30 88.2 -47.1 331.88 120 90.4 -42.8 334.69 331.88 120 90.4 -42.8 334.6	104						33.7	-94.2	289.69
107 54 47.1 -88.2 298.13 108 51.4 -85.8 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 115 58 77.3 -63.4 320.63 116 80.3 -59.6 323.44 320.63 326.25 118 85.8 -51.4 329.06 326.25 118 85.8 -51.4 329.06 326.25 118 85.8 -51.4 329.06 331.88 120 90.4 -42.8 334.69 331.88 120 90.4 -42.8 337.50 340.31 123 62	105	53	27	14			38.3	-92.4	292.50
108 51.4 -85.8 300.94 109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 315.00 114 74.1 -67.2 317.81 315.00 116 80.3 -59.6 323.44 320.63 116 80.3 -59.6 323.44 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 345.94 125 63 32 98.1 -19.5 348.75	106						42.8	-90.4	295.31
109 55 28 55.6 -83.1 303.75 110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 115 58 77.3 -63.4 320.63 116 80.3 -59.6 323.44 117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 <	107	54					47.1	-88.2	298.13
110 59.6 -80.3 306.56 111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 315.00 317.81 320.63 316 320.63 320.63 316 320.63 323.44 320.63 323.44 329.63 324.4 329.06 323.44 329.06 326.25 326.25 326.25 326.25 326.25 326.25 326.25 326.25 326.25 326.25 327.4 329.06	108						51.4	-85.8	300.94
111 56 63.4 -77.3 309.38 112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 315.00 317.81 317.81 320.63 316.00 320.63	109	55	28				55.6	-83.1	303.75
112 67.2 -74.1 312.19 113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 115 58 77.3 -63.4 320.63 116 80.3 -59.6 323.44 117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.	110						59.6	-80.3	306.56
113 57 29 15 8 4 70.7 -70.7 315.00 114 74.1 -67.2 317.81 115 58 77.3 -63.4 320.63 116 80.3 -59.6 323.44 117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	111	56					63.4	-77.3	309.38
114 74.1 -67.2 317.81 115 58 77.3 -63.4 320.63 116 80.3 -59.6 323.44 117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	112						67.2	-74.1	312.19
115 58 77.3 -63.4 320.63 116 80.3 -59.6 323.44 117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	113	57	29	15	8	4	70.7	-70.7	315.00
116 80.3 -59.6 323.44 117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	114						74.1	-67.2	317.81
117 59 30 83.1 -55.6 326.25 118 85.8 -51.4 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	115	58					77.3	-63.4	320.63
118 85.8 -51.4 329.06 119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	116						80.3	-59.6	323.44
119 60 88.2 -47.1 331.88 120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	117	59	30				83.1	-55.6	326.25
120 90.4 -42.8 334.69 121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	118						85.8	-51.4	329.06
121 61 31 16 92.4 -38.3 337.50 122 94.2 -33.7 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	119	60					88.2	-47.1	331.88
122 94.2 -33.7 340.31 123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	120						90.4	-42.8	334.69
123 62 95.7 -29.0 343.13 124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	121	61	31	16			92.4	-38.3	337.50
124 97.0 -24.3 345.94 125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	122						94.2	-33.7	340.31
125 63 32 98.1 -19.5 348.75 126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	123	62					95.7	-29.0	343.13
126 98.9 -14.7 351.56 127 64 99.5 -9.8 354.38	124						97.0	-24.3	345.94
127 64 99.5 -9.8 354.38	125	63	32				98.1	-19.5	348.75
	126						98.9	-14.7	351.56
128 99.9 -4.9 357.19	127	64					99.5	-9.8	354.38
	128						99.9	-4.9	357.19

Pin-out Diagram

Top View



Terminal List Table

NAME	PIN	Pin Description	EXTERNAL COMPONENTS OR CONNECTIONS
POWER A	AND GRO	DUND	
GND	14、28	芯片地	所有GND管脚和底部散热片需接地
PPAD	-		
VMA	4	A H桥电源	所有VM管脚连一起,做好电源滤波
VMB	11	B H桥电源	
V3P3OUT	15	3.3V整流输出	外接0.47uF电容到地
CP1	1	电荷泵	两者之间接0.1uF电容
CP2	2		
VCP	3	高端管栅极驱动	接0.1uF电容到VM
CONTRO	L		
nENBL	21	使能输入	逻辑高电平关闭输出;逻辑低电平使能输出;内部下拉100k.
nSLEEP	17	休眠输入	逻辑高电平使能输出;逻辑低电平使芯片进入休眠模式;内部下拉1M.
STEP	22	步进时钟输入	上升沿使内部时序前进一步;内部下拉100k
DIR	20	方向控制输入	方向控制输入;内置下拉100k
MODE0	24	细分输入0	细分模式输入 - full, 1/2, 1/4, 1/8/, 1/16, 1/32
MODE1	25	细分输入1	上四工4,100
MODE2	26	细分输入2	内置下拉100k.
DECAY	19	衰减方式输入	接地选择电流上升慢衰,下降混合衰;悬空选择全混合衰;衰减时间可通过外接 下拉电阻调整;内置下拉22k
nRESET	16	复位输入	逻辑高使能芯片;逻辑低使芯片复位;内置下拉100k
AVREF	12	A H桥参考电压输入	参考电压输入,通常两管脚相连,可连着至V3P3OUT,建议加0.1uF电容到地滤
BVREF	13	B H桥参考电压输入	- 波
NC	23	悬空	无定义
STATUS			
nFAULT	18	Fault 输出	发生异常时输出低,开漏输出,使能时外部需上拉(过温,过流)
nHOME	27	Home 输出	HOME状态输出低,开漏输出,使能时外部需上拉
OUTPUT			
ISENA	6	Bridge A Isense	接检流电阻到地
ISENB	9	Bridge B Isense	接检流电阻到地
AOUT1	5	Bridge A output 1	Connect to motor winding A
AOUT2	7	Bridge A output 2	Positive current is AOUT1 → AOUT2
BOUT1	10	Bridge B output 1	Connect to motor winding B
BOUT2	8	Bridge B output 2	Positive current is BOUT1 → BOUT2

TSSOP 28 with exposed thermal pad

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
D	9.600	9.800	0.378	0.386
D1	3.710	3.910	0.146	0.154
E	4. 300	4. 500	0.169	0.177
b	0.190	0.300	0.007	0.012
С	0. 090	0.200	0.004	0.008
E1	6. 250	6. 550	0.246	0. 258
E2	2.700	2. 900	0.106	0.122
A		1. 100		0.043
A2	0.800	1.000	0.031	0.039
A1	0.020	0. 150	0.001	0.006
e	0.65 (BSC)		0.026 (BSC)	
L	0.500	0.700	0.02	0.028
Н	0.25(TYP)		0.01(TYP)	
θ	1 °	7°	1°	7°

IMPORTANT NOTICE

注意

Jiaxing Heroic Electronic Technology Co., Ltd (HT) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any products or services without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

嘉兴禾润电子科技有限公司(以下简称HT)保留对产品、服务、文档的任何修改、更正、提高、改善和其他改变,或停止提供任何产品和服务,并不提供任何通知的权利。客户在下单和生产前应确保所得到的信息是最新、最完整的。

HT assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using HT components.

HT对相关应用的说明和协助以及客户产品的板级设计不承担任何责任。

HT products are not authorized for use in safety-critical applications (such as life support devices or systems) where a failure of the HT product would reasonably be expected to affect the safety or effectiveness of that devices or systems.

HT的产品并未授权用于诸如生命维持设备等安全性极高的应用中。

The information included herein is believed to be accurate and reliable. However, HT assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

本文中的相关信息是精确和可靠的,但HT并不对其负责,也不对任何可能的专利和第三方权利的侵害负责。

Following are URLs and contacts where you can obtain information or supports on any HT products and application solutions: 下面是可以联系到我公司的相关联系方式:

嘉兴禾润电子科技有限公司

Jiaxing Heroic Electronic Technology Co., Ltd.

地址: 浙江省嘉兴市凌公塘路3339号JRC大厦A座三层

Add: A 3rd floor, JRC Building, No. 3339, LingGongTang Road, Jiaxing, Zhejiang Province

销售/Sales: 0573-82583866

支持/Support: 0573-82586151

传真/Fax: 0573-82585078

E-mail: sales@heroic.com.cn

网址/Website: www.heroic.com.cn