

NS4890B 用户手册 V1.2

深圳市纳芯威科技有限公司 2012年10月

1W 单声道音频功放

修改历史

日期	版本	作者	修改说明

目 录

1 功能	说明	5
2 主要	特性	5
	领域	
, ,	应用电路	
5 极限	参数	6
6 电气	特性	6
7 芯片	管脚描述	8
7.1	*************************************	
7.1	引脚功能描述	
8 NS48	890BB 典型参考特性	9
8.1	总谐波失真(THD),失真+噪声(THD+N),信噪比(S/N)	Q
8.2	电源电压抑制比 (PSRR)	
8.3	芯片功耗(Power Dissipation)	
8.4	关断滞回(Shut Down Hysteresis)	
8.5	输出功率(Output Power)	14
9 NS48	890BB 应用说明	15
9.1	芯片基本结构描述	15
9.2	芯片数字逻辑特性	
9.3	外部电阻配置	
9.4	芯片功耗	
9.5	电源旁路	
9.6	掉电模式	
9.7	外围元件的选择	
9.8	选择输入耦合电容	
9.9 9.10	设计参考实例 其它注意更值	
	其它注意事项	
10	芯片的封装	18
10.1	MSOP-8 封港早计图	18

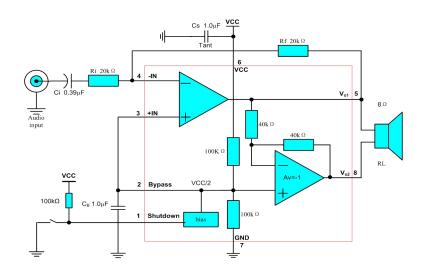
1W 单声道音频功放

图目录

图 1 NS4890B 典型应用电路	8 16
表目录	
表 1 芯片最大物理极限值	6
表 2 NS4890B 电气特性 1(VDD=5.0V,TA=25oC)	
表 3 NS4890B 电气特性 2(VDD=3.6V,TA=25oC)	7
表 4 NS4890B 电气特性 3(VDD=2.5V,TA=25oC)	
表 5 NS4890B 管脚描述	
表6关断信号数字逻辑特性	16

1 功能说明

NS4890B 是适用于便携电子产品的音频功率放大器。5V 电压时,最大驱动功率为 1.1W(8 Ω 负载) 1.6W(4 Ω 负载)。NS4890B 的应用电路简单,只需要极少数外围器件。NS4890B 输出不需要外接耦合电容或上举电容,采用 MSOP8 封装,非常适合低电压、低功耗音频应用方案上使用。NS4890B 可以通过控制进入休眠模式,从而降低功耗。NS4890B 通过创新的"开关/切换噪声"抑制技术,杜绝了上电、掉电出现的噪声。NS4890B 工作稳定,增益带宽积高达 2.5MHz,并且单位增益稳定。通过配置外围电阻可以调整放大器的电压增益,方便应用。


2 主要特性

- 高电源电压抑制比(PSRR),在 217Hz 及 1KHz 时,达到 70dB
- 低噪声及谐波失真(THD+N),小于1%(5V,8Ω,1W时)
- 输出功率高(THD+N<1%): 5V-1.1W(8Ω负载), 5V-1.6W(4Ω负载),
 3.6V-850mW(4Ω负载), 3.6V-560mW(8Ω负载)
- 掉电模式漏电流小,小于 0.1 uA
- 上电、掉电噪声抑制
- 不需驱动输出耦合电容
- 单位增益稳定
- 用户可选的高、低电平控制休眠模式
- MSOP8 封装

3 应用领域

- 移动电话(手机等)
- 个人移动终端 PDA
- 移动电子设备
- 消费类电子产品(MP3/MP4/DFP/Protable DVD)

4 典型应用电路

图 1 NS4890B 典型应用电路

5 极限参数

表 1 芯片最大物理极限值

参数	最小值	最大值	单位	说明
电源电压	1.8	6	V	
储存温度	-65	150	°C	
输入电压	-0.3	$V_{ m DD}$	V	
功耗			mW	内部限制
耐 ESD 电压 1	3000		V	HBM
耐 ESD 电压 2	250		V	MM
节温	150		°C	典型值 150
推荐工作温度	-40	85	°C	
推荐工作电压	2.0	5.25		
热阻				
$\theta_{ m JC}$		35	°C/W	
$\theta_{ m JA}$		140	°C/W	
焊接温度		220	°C	15 秒内

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

6 电气特性

表 2 NS4890B 电气特性 1 (VDD=5.0V, TA=25oC)

符号	参数	测试条件	最小值	标准值	最大值	单位
I_{DD}	电源静态电流	V_{IN} =0V, I_0 =0A,无		2.4	5	mA
		负载				
	电源静态电流	V _{IN} =0V,I ₀ =0A,负		2.6	6	mA
		载 8Ω				
I _{OFF}	芯片掉电漏电流			0.1	1.5	μA
Vos	输出失调电压			3.7	20	mV
Ro	输出电阻		7	8.5	10	ΚΩ
Po	输出功率,8Ω	THD+N<1%,f=1KHz	1.0	1.1		W
	输出功率,4Ω	THD+N<1%,f=1KHz	1.55	1.6		W
T _D	芯片唤醒时间			100		mS
THD+N	总谐波+失真噪	PO=0.5W _{rms} ;f=1KHz		0.1	0.2	%
	声					
PSRR	电源电压抑制比	Vripple=200mVP-	60	63 (f =		dB
		P, 正弦波, 输入接		217Hz) 67 (f =		
		10Ω电阻		1kHz)		

表 3 NS4890B 电气特性 2 (VDD=3.6V, TA=25oC)

	770 - 1070-		OV, 171	23007		
符号	参数	测试条件	最小值	典型值	最大值	单位
I_{DD}	电源静态电流	$V_{IN}=0V$, $I_0=0A$, Ξ		1.8	5	mA
		负载				
	电源静态电流	V _{IN} =0V, I _O =0A,负		2.2	6	mA
		载 8Ω				
I _{OFF}	芯片掉电漏电流			0.1	1.5	μA
Vos	输出失调电压			3.7	20	mV
Ro	输出电阻		7	8.2	10	ΚΩ
Po	输出功率,8Ω	THD+N<1%,f=1KHz		560		mW
	输出功率,4Ω	THD+N<1%,f=1KHz		850		mW
T_D	芯片唤醒时间			75		mS
THD+N	总谐波失真+噪	P _O =0.425W _{rms;} f=1KH		0.1	0.2	%
	声	Z				
PSRR	电源电压抑制比	V _{ripple} =200mV _{P-P} , 正弦波,输入接 10Ω 电阻	55	63 (f = 217Hz) 68 (f = 1kHz)		dB

表 4 NS4890B 电气特性 3 (VDD=2.5V, TA=25oC)

符号	参数	测试条件	最小值	典型值	最大值	单位
I_{DD}	电源静态电流	V _{IN} =0V, I _O =0A,无		1.7	5	mA
		负载				
	电源静态电流	V _{IN} =0V,I ₀ =0A,负		2	6	mA
		载 8Ω				
I _{OFF}	芯片掉电漏电流			0.1	2	μA
Vos	输出失调电压			3.7	20	mV
Ro	输出电阻		7	8.5	10	ΚΩ
Po	输出功率,8Ω	THD+N<1%,f=1KHz		250		mW
	输出功率,4Ω	THD+N<1%,f=1KHz		350		mW
T _D	芯片唤醒时间			70		mS
THD+N	总谐波失真噪声	PO=0.15W _{rms} ;f=1KHz		0.1	0.2	%
PSRR	电源电压抑制比	Vripple=200mVP- P,正弦波,输入接 10Ω电阻	60	63 (f = 217Hz) 68 (f = 1kHz)		dB

7 芯片管脚描述

7.1 管脚分配图

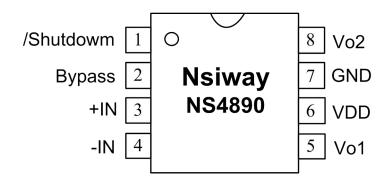
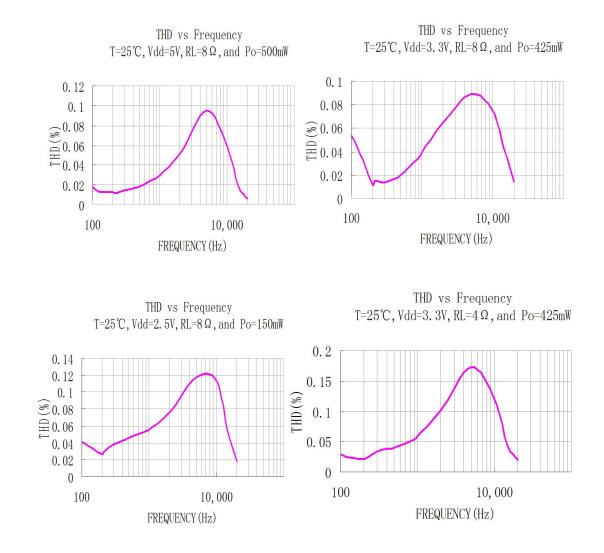


图 2 MSOP-8 的封装的管脚分配图

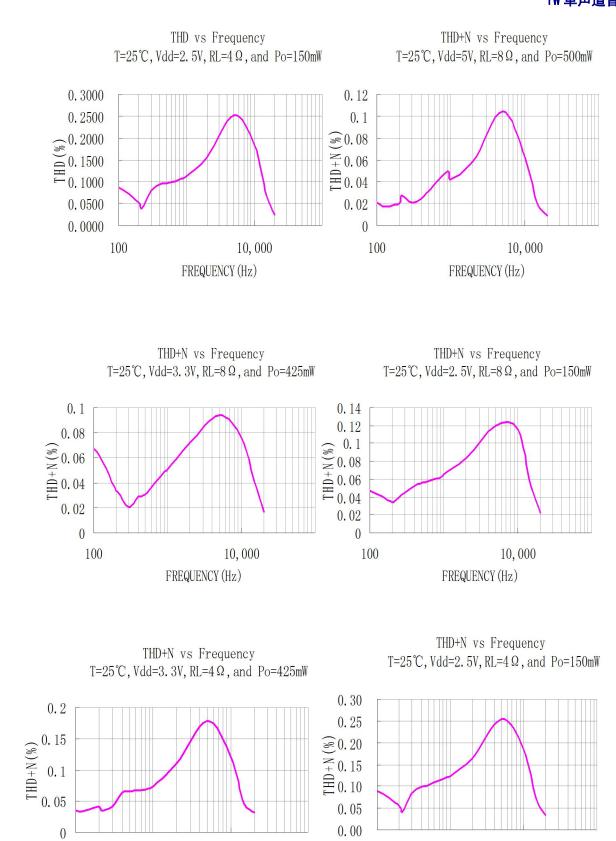
7.2 引脚功能描述


表 5 NS4890B 管脚描述

管脚号	符号	描述			
1	Shutdown	掉电控制管脚,低电平有效,			
2	Bypass	内部共模电压旁路电容			
3	+IN	模拟输入端,正相			
4	-IN	模拟输入端,反相			
5	VO1	模拟输出端 1			
6	VDD	电源正			
7	GND	电源地			
8	VO2	模拟输出端 2			

8 NS4890B 典型参考特性

8.1 总谐波失真(THD),失真+噪声(THD+N),信噪比(S/N)


深圳市纳芯威科技有限公司 第 9 页 , 共 19 页

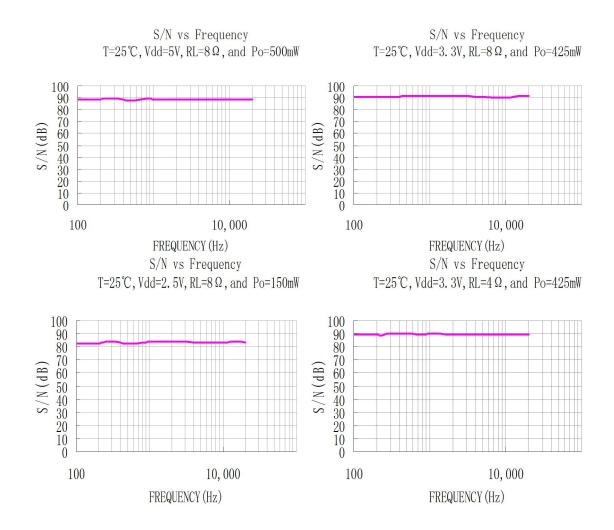
0

100

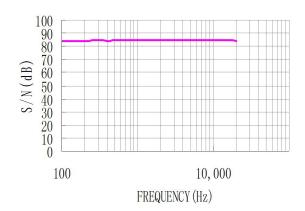
深圳市纳芯威科技有限公司 第 10页, 共 19页

0.00

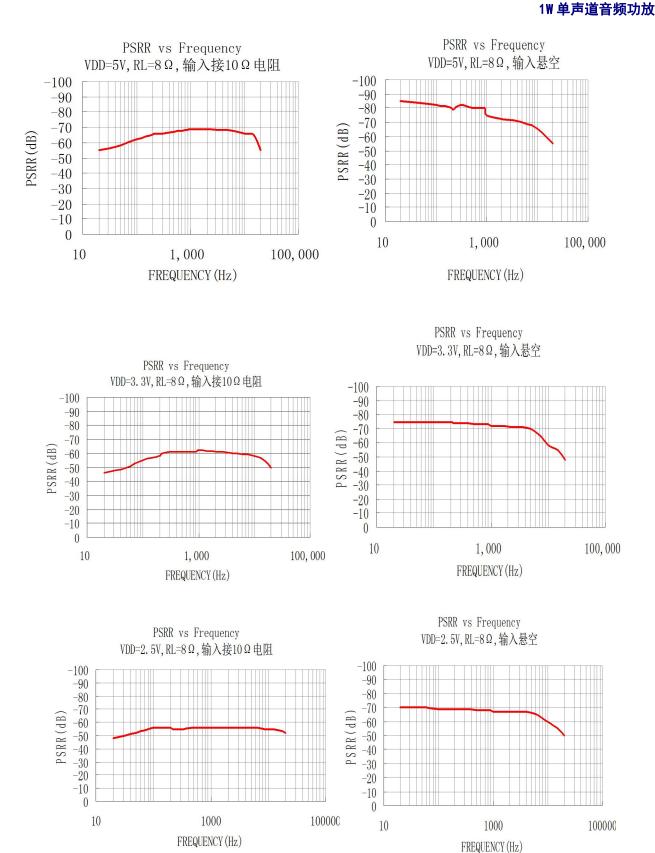
10,000


FREQUENCY (Hz)

100

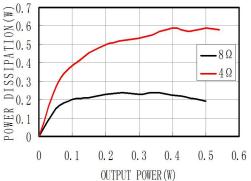

10,000

FREQUENCY (Hz)

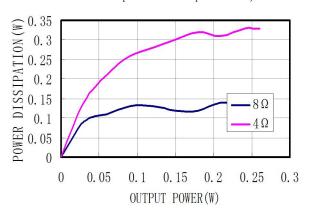

S/N vs Frequency T=25°C, Vdd=2.5V, RL=4 Ω , and Po=150mW

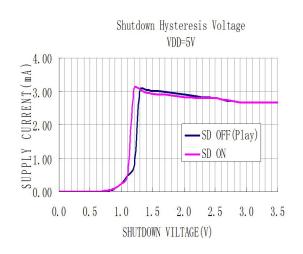
8.2 电源电压抑制比 (PSRR)

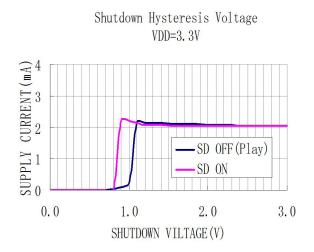
深圳市纳芯威科技有限公司 第11页,共19页



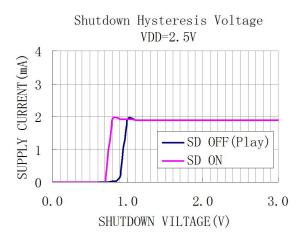
8.3 芯片功耗 (Power Dissipation)


深圳市纳芯威科技有限公司 第12页,共19页

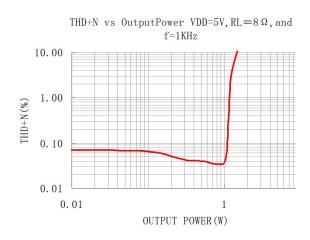

Power Dissipaton vs Output Power, VDD=3.3V

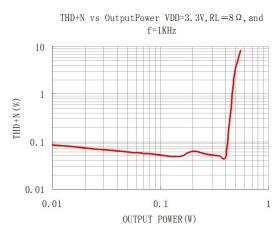


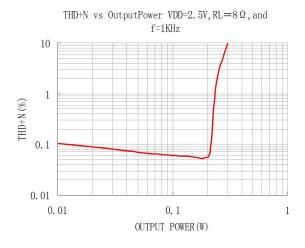
Power Dissipaton vs Output Power, VDD=2.5V



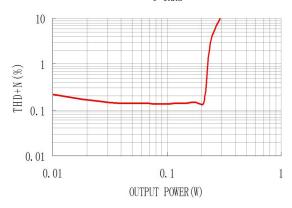
8.4 关断滞回 (Shut Down Hysteresis)

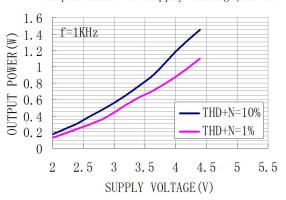


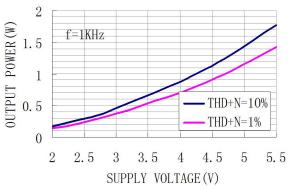


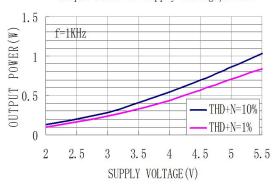


8.5 输出功率(Output Power)






THD+N vs OutputPower VDD=2.5V, RL=4 Ω , and f=1KHz


Output Power vs Supply Voltage, RL=4Ω

Output Power vs Supply Voltage, RL=8 Ω

Output Power vs Supply Voltage, RL=16Ω

9 NS4890B 应用说明

芯片基本结构描述

NS4890B 是双端输出的音频功率放大器,内部集成两个运算放大器,第一个放大器的增益可以调整反馈电阻来设置,后一个为电压反相跟随,从而形成增益可以配置的差分输出的放大驱动电路,其原理框图为:

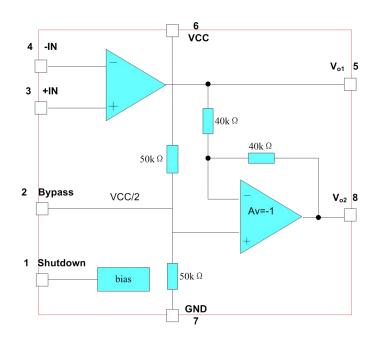


图 3 NS4890B 原理框图

9.1 芯片数字逻辑特性

表 6 关断信号数字逻辑特性

参数	最小值	典型值	最大值	单位	说明			
电源电压为 5V	电源电压为 5V							
VIH		1.5		V				
VIL		1.3		V				
电源电压为 3V	7							
VIH		1.3		V				
VIL		1.0		V				
电源电压为 2.6V								
VIH		1.2		V				
VIL		1.0		V				

9.2 外部电阻配置

如应用图示 1,运算放大器的增益由外部电阻 Rf、Ri 决定,其增益为 Av=2×Rf/Ri,芯片通过 VO1、VO2 输出至负载,桥式接法。

桥式接法比单端输出有几个优点:其一是,省却外部隔直滤波电容。单端输出时,如不接隔直电容,则在输出端有一直流电压,导致上电后有直流电流输出,这样即浪费了功耗,也容易损坏音响。其二是,双端输出,实际上是推挽输出,在同样输出电压情况下,驱动功率增加为单端的4倍,功率输出大。

9.3 芯片功耗

功耗对于放大器来讲是一个关键指标之一,差分输出的放大器的最大自功耗为:

 $P_{DMAX} = 4 \times (V_{DD})^{-2}/(2 \times \prod^2 \times R_L)$

必须注意,自功耗是输出功率的函数。

在进行电路设计时,不能够使得芯片内部的节温高于 T_{JMAX} (150°C),根据芯片的热阻 Θ_{JA} 来设计,可以通过自己散热铜铂来增加散热性能。

如果芯片仍然达不到要求,则需要增大负载电阻、降低电源电压或降低环境温度来解决。

9.4 电源旁路

在放大器的应用中,电源的旁路设计很重要,特别是对应用方案的噪声性能及电源电压抑制性能。设计中要求旁路电容尽量靠近芯片、电源脚。典型的电容为10uF的电解电容并上0.1uF的陶瓷电容。

在 NS4890B 应用电路中,另一电容 C_B (接 BYP 管脚) 也是非常关键,影响 PSRR、开关/切换噪声性能。一般选择 $0.1 uF \sim 1 uF$ 的陶瓷电容。

9.5 掉电模式

为了节电,在不使用放大器时,可以关闭放大器,NS4890B有掉电控制管脚,可以控制放大器是否工作。

该控制管脚的电平必须要接满足接口要求的控制信号,否则芯片可能进入不定状态,而不能够进入掉电模式,其自功耗没有降低,达不到节电目的。

9.6 外围元件的选择

正确选择外围元器件才能够确保芯片的性能,尽管 NS4890B 能够有很大的余量保证性能,但为了确保整个性能,也要求正确选择外围元器件。

NS4890B 在单位增益稳定,因此使用的范围广。通常应用单位增益放大来降低 THD+N,是信噪比最大化。但这要求输入的电压最大化,通常的音频解码器能够有 1V_{ms} 的电压输出。

另外, 闭环带宽必须保证, 输入耦合电容 C_i (形成一阶高通) 决定了低频响应,

9.7 选择输入耦合电容

过大的输入电容,增加成本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于100Hz-150Hz的低频语音,因此采用大的电容并不能够改善系统的性能。

除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致 pop 噪声出现,因此,小的耦合电容可以减少该噪声。

另外,必须考虑 C_B 电容的大小,选择 $C_B=1$ uF, $C_i=0.1$ uF ~ 0.39 uF,可以满足系统的性能。

9.8 设计参考实例

设计规格

- 输出功率 1W_{rms}
- 负载阻抗 8欧姆
- 輸入电平 1V_{rms}
- 輸入电阻 20KΩ
- 帯宽 100Hz~20KHz+/-0.25dB

①首先确定最小工作电压

根据 NS4890B 的输出功率与电源电压的关系图,可以确定电源电压应选择 5.0V。电源电压的裕量可以保证输出可以高于 1W 的功率而不失真。

选择电压后, 然后考虑功耗的问题。

②确定电压增益

要求 A_{VD} 大于 $SQRT(P_O \times R_L)$ / V_{IN} , 即 V_{orms} / V_{inrms} ,而 R_f / R_i =AVD/Z,在该设计中,可以计算得出 A_{VD} 最小为 2.83,选择 A_{VD} =3,可以计算得到 R_i = $20K\Omega$, R_f = $30K\Omega$ 。

③最后根据带宽要求来确定输入电容

输入低频的-3dB 带宽为 100Hz,1/5 低频点低于-3dB 约 0.17dB 及 5 倍高频点),在规格要求以内,取 f_L =20Hz, f_H =100KHz,

因此可得 C_i约 0.39uF。

高频点 f_H 由放大器的 GBW 决定,至少要求 GBW 大于 $A_{VD} \times f_H = 300 KHz$,远小于 NS4890B 的 2.5MHz。

9.9 其它注意事项

NS4890B 单位增益稳定,但如果增益超过 10 倍(20dB)时,额外的反馈电容 C_f 需要并联在电阻 R_f 上,避免高频的振荡现象。但必须要求与 R_f 组成的极点频率高于 f_H (在实例中为 300KHz),如本例中选择 C_f 为 5pF 时,转折频率为 320KHz。可以满足要求。

10 芯片的封装

10.1 MSOP-8 封装尺寸图

1W 单声道音频功放

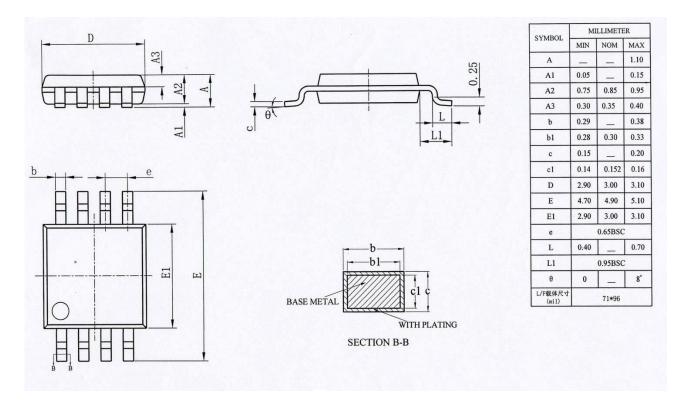


图 4 MSOP-8 封装尺寸图

声明:深圳市纳芯威科技有限公司保留在任何时间,并且没有通知的情况下修改产品资料和产品规格的权利,本手册的解释权归深圳市纳芯威科技有限公司所有,并负责最终解释。