

目 录

1.	产品概述	2
2.	主要特性	2
3.	系统框图	4
4.	管脚配置	5
5.	中央处理器	8
	5.1 指令集	8
	5.2 ROM	10
	5.3 RAM	10
	5.4 CPU SFR	12
	5.5 SFR	15
	5.6 OPTION配置选项	17
6.	功能模块	19
	6.1 CLOCK	19
	6.2 工作模式	20
	6.3 INT	21
	6.3.1 中断功能	21
	6.3.2 中断寄存器	21
	6.4 GPIO	
	6.5 TIMER	30
	6.5.1 TIMER0	30
	6.5.2 TIMER1	
	6.6 LVD	39
	6.7 TOUCH	
	6.8 ADC	41
	6.9 WDT	45
	6.10复位方式	46
7.	电气特性	47
	7.1 电气特性极限参数	47
	7.2 直流特性	47
	7.3 振荡器特性	48
	7.4 ADC特性	48
8.	封装尺寸	49
	8.1 SOP16封装	49
	8.2 SOP8封装	50
	8.3 QFN16封装	51
	8.4 DFN2*3-8L封装	52
^	压力力量	50

触控 A/D 型 8-Bit MCU

1. 产品概述

PT8M2302 是一款可多次编程(MTP)A/D型 8 位 MCU,其包括 2K*16bit MTP ROM、256*8bit SRAM、ADC、PWM、Touch 等功能,具有高性能精简指令集、低工作电压、低功耗特性且完全集成触控按键功能。为各种触控按键的应用,提供了一种简单而又有效的实现方法。广泛应用于触摸台灯、小家电、消费类电子产品等电子应用领域。

2. 主要特性

■ CPU

- RISC 内核, 支持 66 条指令
- 支持8级硬件堆栈
- 指令周期可配置为 2T/4T/8T/16T
- 复位向量位于 000H
- 支持 6 种中断源, Timer0、Timer1、INT0、INT1、ADC、TOUCH
- 两级中断优先级可设。高优先级中断向量入口: 018h, 低优先级中断向量入口: 008h
- 支持直接与间接数据寻址方式
- 程序存储器 MTP ROM: 2K*16bit, 可重复烧写 100 次
- 数据存储器 SRAM: 256*8bit

■ I/O □

- 13 个双向 I/O 端口,带 SMIT 输入,可配置为漏极开路、内置上拉电阻及下拉电阻
- P10~P17、P01~P04 可配置为触摸通道
- 1个单向输入端口,复用触摸采样电容端口 CMOD

■ 电容式触摸感应模块

- 12 路外部触摸输入

■ ADC

- 12 位 SAR ADC
- 4 路外部输入通道(ADC0~ADC3), 2 路内部特殊通道(内部 VDD/4、内部 GND)
- 3 种参考电压可选: VDD、外部参考电压 VREF、内部基准电压(2.048V)
- 具备初始失调校准功能

■ 定时器

- Timer0
 - 自动装载 8 位定时器, 支持预分频功能
- Timer1

- 自动装载 10 位定时器, 支持预分频功能
- 5路独立的 PWM(PWM0~PWM4)

■ CPU 保护系统及工作模式

- 3 种系统复位方式:
 - 上电复位(POR)
 - 低压复位(LVR)
 - 看门狗(WDT)溢出复位
- 支持3种工作模式
 - Normal 模式:正常工作模式
 - STOP模式:低功耗模式,CPU停止工作,外设停止工作 唤醒方式:外部中断、输入IO电平变化、WDT溢出
 - IDLE 模式:仅 CPU 停止工作,其它外设可以工作 唤醒方式:所有中断、输入 IO 电平变化、WDT 溢出
- 内嵌 LVR 功能,复位阈值可选为: 2.0V、2.2V、2.4V、2.7V、2.9V、3.1V、3.3V、3.6V (误差±1%)
- 内嵌 LVD 功能,检测阈值可选为: 2.3V、2.5V、2.9V、4.3V (误差±1%)
- 内嵌 WDT, 支持预分频功能。4 档 WDT 溢出时间可选: 9ms、18ms、144ms、288ms

■ 时钟系统

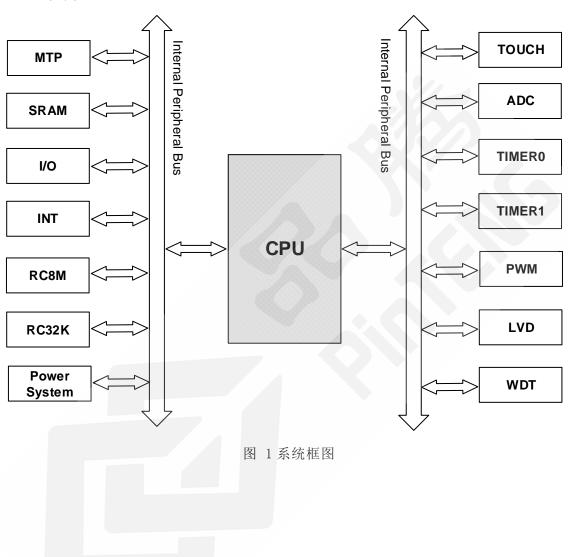
- 内部 RC 高频振荡器 8MHz 精度: ±0.5%(typ)
- 内部 RC 低频振荡器 32KHz 精度: ±15%(typ)

■ 工作温度范围

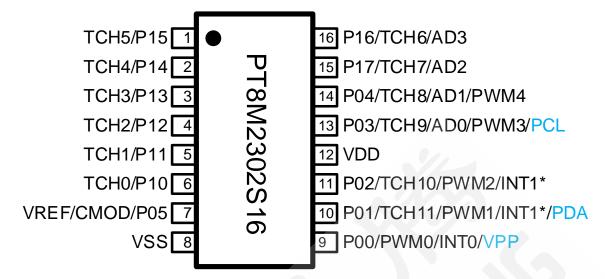
- -40°C ~ +85°C

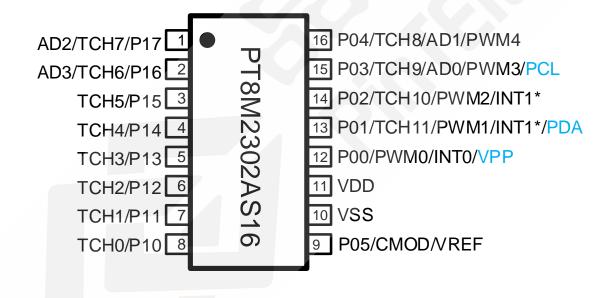
■ 电压工作范围

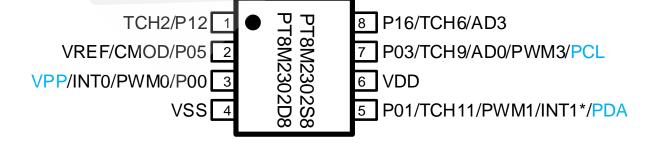
- 2.7V~5.5V(ADC 使能)
- 2.4V~5.5V(LDO ON)
- 2.2V~5.5V(LDO OFF)


■ 抗干扰能力

- HBM ESD: 优于 5000V
- 封装形式: SOP8、SOP16、QFN16、DFN2*3-8L


3. 系统框图


基于 RISC 的架构绝大部分指令都只需一个指令执行周期,少部分需要两个指令执行周期。内置 2K*16bit MTP, 256*8bit SRAM;同时内部集成了 TOUCH、ADC、TIMER、PWM、RC8M、RC32K、WDT、LVD 等外设。



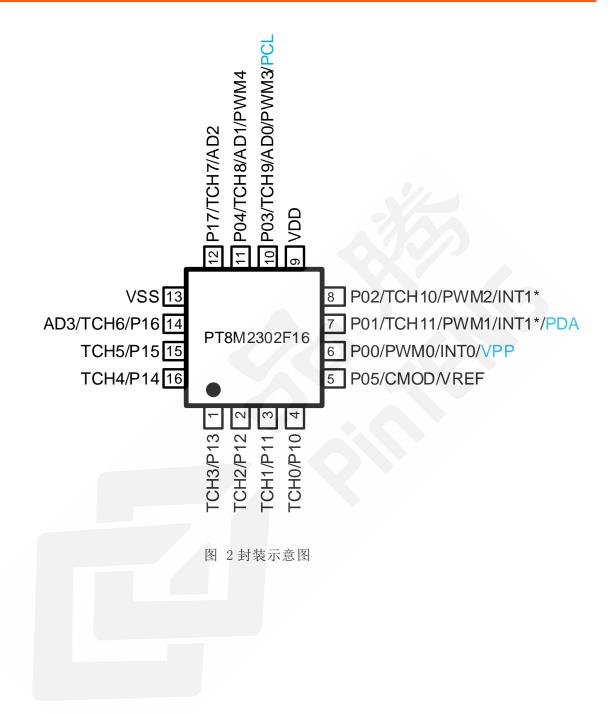

4. 管脚配置

表 1 管脚信号说明表

管脚名称	I/O类型	管脚说明
VSS	Р	地
VDD	Р	电源
PWM[i]	0	PWM[i]输出口,i=0~4
TCH[i]	I	触摸通道[i],i=0~11
P0[i]	I/O	P0输入/输出IO[i],可配置弱上拉/下拉、开漏输出功能, i=0~5
ı olil		(说明: P05只有输入功能)
P1[i]	I/O	P1输入/输出IO[i],可配置弱上拉/下拉、开漏输出功能,i=0~7
VREF	I	ADC参考电压输入端口
AD[i]	I	ADC输入通道[i],i=0~3
INT[i]	I	外部中断[i]输入口,i=0~1
PCL	I	烧录时钟线
PDA	İ	烧录数据线
VPP	Р	烧录高压

注意: *表示相同功能管脚由 OPTION 配置选项决定。

表 2 管脚信号说明表

8M2302S16	8M2302AS16	8M2302S8	8M2302D8	8M2302F16	管脚名称	I/O	主功能		兼容功能		
1	3	-	-	15	P15/TCH5	I/O	P15	TCH5			
2	4	-	-	16	P14/TCH4	I/O	P14	TCH4			
3	5	1	-	1	P13/TCH3	I/O	P13	TCH3			
4	6	1	1	2	P12/TCH2	I/O	P12	TCH2			
5	7	-	-	3	P11/TCH1	I/O	P11	TCH1			
6	8	-	-	4	P10/TCH0	I/O	P10	TCH0			
7	9	2	2	5	P05/CMOD/VREF	I/O	P05		CMOD		VREF
8	10	4	4	13	VSS	Р	VSS				
9	12	3	3	6	P00/PWM0/INT0/VPP	I/O	P00		PWM0	INT0	VPP
10	13	5	5	7	P01/TCH11/PWM1/INT1/PDA	I/O	P01	TCH11	PWM1	INT1	PDA
11	14	-	-	8	P02/TCH10/PWM2/INT1	I/O	P02	TCH10	PWM2	INT1	
12	11	6	6	9	VDD	Р	VDD				
13	15	7	7	10	P03/TCH9/AD0/PWM3 /PCL	I/O	P03	TCH9	PWM3	AD0	PCL
14	16	-	-	11	P04/TCH8/AD1/PMW4	I/O	P04	TCH8	PMW4	AD1	
15	1	-	-	12	P17/TCH7/AD2	I/O	P17	TCH7		AD2	
16	2	8	8	14	P16/TCH6/AD3	I/O	P16	TCH6		AD3	

5. 中央处理器

5.1 指令集

表 3 MCU 指令集

类别	指令格式	指令意义	周期	标志位
	ADD A, K	A ← A + K	1	
	ADD A, R	A ← A + R	1	
	ADDR A, R	$R \leftarrow A + R$	1	
	ADDC A, R	A ← A + R + C	1	С
算术运算	ADDCR A, R	R ← A + R + C	1	DC
异小色异	SUB A, K	A ← A -K	1	Z
	SUB A, R	A ← A - R	1	OV
	SUBR A, R	R ← A - R	1	
	SUBC A, R	A ← A - R - (~C)	1	
	SUBCR A, R	R ← A - R - (~C)	1	
	AND A, K	A ← A & K	1	Z
	AND A, R	A ← A & R	1	Z
	ANDR A, R	R ← A & R	1	Z
	OR A, K	A ← A K	1	Z
逻辑运算	OR A, R	A ← A R	1	Z
心 再色异	ORR A, R	$R \leftarrow A \mid R$	1	Z
	XOR A, K	A ← A ^ K	1	Z
	XOR A, R	A ← A ^ R	1	Z
	XORR A, R	R ← A ^ R	1	Z
	BCPL R, b	R的第b个位取反,然后送给R	1	~
	INC R	A ←R + 1	1	Z
	INCR R	R ←R + 1	1	Z
	INCSZ R	A←R+1,如果A=0,则跳过下一条指令	1 or 2	~
递增和递	INCSZRR	R←R+1,如果R=0,则跳过下一条指令	1 or 2	~
减指令	DEC R	A ←R - 1	1	Z
	DECR R	R ←R - 1	1	Z
	DECSZ R	A ←R - 1,如果A=0,则跳过下一条指令	1 or 2	~
	DECSZR R	R ←R - 1,如果R=0,则跳过下一条指令	1 or 2	~
	RLC R	A←R带进位循环左移1位	1	С
	RLCR R	R←R带进位循环左移1位	1	С
	RRC R	A ← R带进位循环右移1位	1	С
移位指令	RRCR R	R ← R带进位循环右移1位	1	С
	RL R	A ← R循环左移1位	1	~
	RLR R	R←R循环左移1位	1	~
	RR R	A ← R循环右移1位	1	~

	RRR R	R ← R循环右移1位	1	~
	MOV A, R	A←R	1	Z
	MOV A, R	R ← A		~
			1	
		A←K	1	~
*** 1日 (十) **	MOV R, R	R ← R,两个R为同一地址,影响Z	1	Z
数据传送	MOVAR R	A ← RAM[R], R为11bit值(R为8位)	1	Z
	MOVRA R	RAM[R] ← A,R为11bit值(R为8位)	1	~
	DPSEL K	DPAGE ← K	1	~
	MPSEL K	13bit的K赋值给MP	2	~
	ESEL K	11bit的K赋值给{EADRH,EADRL}	2	~
偏移计算	MSTEP K	MP←MP + K(-128≤K≤127)	1	~
PIN 12 VI 31	ESTEP K	EADR←EADR + K(-128≤K≤127)	1	~
位操作	BCLR R, b	R[b] ← 0	1	~
121×11	BSET R, b	R[b] ← 1	1	~
	JMP AA	PC←AA,AA为13bit值,JMP可跳转8K ROM空间	2	~
	BTSZ R, b	如果R[b]=0,则跳过下一条指令	1 or 2	~
	BTSNZ R, b	如果R[b]=1,则跳过下一条指令	1 or 2	~
转移指令	CALL AA	Push pc+1,then PC←AA,AA为13bit 值,CALL可跳转8K ROM空间	2	~
	RET	PC值出栈	2	~
	RET A, K	PC值出栈同时K赋给累加器A	2	~
	RETI	PC值出栈同时全局中断使能置1	2	~
	SE R	如果A=R,则跳过下一条指令	1 or 2	CZ
	SE K	如果A=K,则跳过下一条指令	1 or 2	CZ
	NOP	空指令不作任何操作	1	~
	CLR R	把RAM(R)中的值赋0	1	Z
	CLRWDT	Clear WDT	1	~
其它指令	SWAP R	R的高四位和低四位交换,结果放入A	1	~
	SWAPR R	R的高四位和低四位交换,结果放入R	1	~
	STOP	芯片进入STOP状态	1	~
	IDLE	芯片进入IDLE状态	1	~
查表	MOVC R	ROM[EADRH, EADRL]→ [EDATH, R]把 ROM地址(EADRH, EADRL)中的值高8位 赋给EDATH, 低8位赋值给R	2	~

参数说明:

 R:
 数据存储器地址
 A:
 工作寄存器
 k:
 立即数

 b:
 位选择(0~7)
 PC:
 程序计数器
 C:
 进位标志

DC: 半加进位标志 Z: 结果为零标志

5.2 ROM

2K×16bit 的存储空间,由 11 位 PC 指针访问,复位地址为 000h,中断向量地址 008h 或 018h,支持 8 级堆栈,程序存储器和堆栈结构如下:

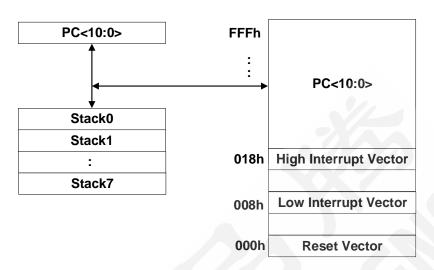


图 3程序存储器 ROM

■ 说明: 堆栈级数为8级,如果用户使用时超过此级数,则会导致功能出错

5.3 RAM

有一个 256×8bit 的数据存储空间(通过 DPAGE 配置为 2 个 Bank),最后 16*8bit 空间用于堆栈操作指令(软件不可访问)。逻辑地址和 SRAM 物理地址映射关系如下:

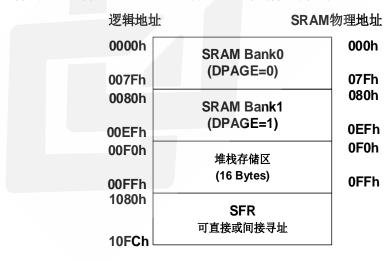


图 4 数据存储器 SRAM

数据存储器主要用于程序运行过程中全局以及中间变量的存储。数据存储器一共有 256 个单元(最后 16 字节为堆栈存储空间),它的物理地址可被划分为如下区域:

- 分页 0 数据存储区: 000h~07Fh (DPAGE=0)
- 分页 1 数据存储区: 080h ~ 0EFh (DPAGE=1)
- 堆栈存储区: 0F0h~0FFh

www.pintengtech.com 版本号 V1.4 10 / 53

1. 直接寻址

- 1. 直接寻址地址空间分为低 128 字节和高 128 字节:
 - (1) 低 128 字节(R[7:0]< 0x80)为 SRAM 寻址,由{DPAGE,R[6:0]}组成 RAM 物理寻址。
 - (2) 高 128 字节(R[7:0]>= 0x80)为 SFR 寻址, SFR 地址与 DPAGE 无关。
- 2. SFR 地址空间可直接寻址,也可间接寻址;
- 3. MOVAR/MOVRA 为 SRAM 物理地址直接寻址指令:
 - (1) MOVAR R 指令: R 为 8 位地址空间,将 R[7:0]地址中的值读到 ACC 寄存器;
 - (2) MOVRA R 指令: R 为 8 位地址空间,将 ACC 寄存器的值写到 R[7:0]地址中。

2. 间接寻址

间接寻址空间包括所有 SRAM 空间及 SFR 空间。间接寻址地址 MPH0[4]等于 0 时为寻址 SRAM,通过间接寻址地址寄存器 MPL0[7:0]来访问其物理地址;

间接寻址地址 MPH0[4]等于 1 时为寻址 SFR, 间接寻址 SFR 的物理地址为: MPL0[7:0]。 映射关系如下图所示:

说明:

- 1. 间接寻址 SRAM 堆栈存储区时,功能将出错
- 2. 间接寻址 SFR 空间时, 寻址地址为 MPL0[7:0] (MPH0[4]=1)

5.4 CPU SFR

CPU 模块相关寄存器:

地址	符号	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值		
1080h	IAR0	通过{MF	通过{MPH0,MPL0}访问数据区(不是一个实际的物理地址)									
1082h	MPL0		MPL0[7:0]									
1083h	MPH0		MPH0[7:0]									
1086h	STATUS	SPDF	-	-	-	-	Z	DC	С	0xxx		
1087h	ACC				ACC	[7:0]				xxxx xxxx		
1088h	PCL				PCL	[7:0]				0000 0000		
1089h	DPAGE	-	-	-	-	-	-	1-7	DPAGE	0		
10F2h	EADRH				EADF	RH[7:0]				XXXX XXXX		
10F3h	EADRL		EADRL[7:0]									
10F4h	EDATH				EDAT	H[7:0]				XXXX XXXX		

● 间接寻址寄存器(IAR0, MPH0,MPL0):

IARO 不是一个实际的物理地址。当间接寻址地址 MPH0[4]等于 0 时为寻址 SRAM,通过间接寻址地址寄存器 MPL0[7:0]来访问其物理地址;间接寻址地址 MPH0[4]等于 1 时为寻址 SFR,间接寻址 SFR的物理地址为: MPL0[7:0]。MPH0 只能使用直接寻址方式写入。

• 状态寄存器(STATUS, 1086h):

状态寄存器包含运算标志,结果标志。

ВІТ	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	SPDF	-	-	-	-	Z	DC	С
Access	R	-	-	-	-	R/W	R/W	R/W
Default	0	-	-	-	-	х	х	х

Bit[7] SPDF: 加速模式标志

1: 加速模式

0: 无加速模式

上述加速模式是指上电复位时间(18ms)

Bit[2] **Z:** 零标志

1: 算术或逻辑操作结果为 0

0: 算术或逻辑操作结果不为0

Bit[1] DC: 辅助进位标志/借位标志,用于借位时,极性相反

Bit[0] C: 进位标志/借位标志,用于借位时,极性相反

• 数据存储器页面选择(DPAGE, 1089h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	-	-	-	-	DPAGE
Access	-	-	-	-	-	-	-	R/W
Default	-	-	-	-	-	-	-	0

DPAGE 只在 SRAM 直接寻址时使用,按如下方式进行分页选择:

DPAGE	BANK值	数据存储器对应逻辑地 址	数据存储器对应物理地址	
0	Bank0	000h ~ 07Fh	000h ~ 07Fh	
1	Bank1	080h ~ 0EFh	080h ~ 0EFh	

• 累加器(ACC, 1087h):

Accumulator 是一个内部数据转化、指令操作和存放操作结果的存储单元

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	ACC R/W 0xxx								
Access									
Default									

• PC 指针低 8 位(PCL, 1088h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name				P	CL				
Access				R/W					
Default	0x00								

PCL 只能通过 **ADDR A**, **PCL** 指令跳转(注: 执行此指令后 PC=PC+PCL, PCL=PCL+ACC; 除此指令外,对 PCL 操作的其它指令不能改变 PC 值)。

软件可以读取它得到 PC 的低 8 位的值,比如: "MOV A,PCL"等,对 PCL 的间接寻址也是无效的。

MOVC 地址寄存器(EADRH, 10F2h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name		EADRH[7:0]										
Access		R/W										
Default		xxx										

Bit[7:0] **EADRH[7:0]**: 读取程序存储器的地址高 8 位

MOVC 地址寄存器(EADRL, 10F3h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name		EADRL[7:0]								
Access				R/	W					
Default				0x	xx					

Bit[7:0] **EADRL[7:0]**: 读取程序存储器的地址低 8 位

MOVC 数据寄存器(EDATH, 10F4h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name		EDATH[7:0]									
Access				R/	W						
Default				0x:	xx						

Bit[7:0] **EDATH[7:0]**: 程序存储器数据在 **SFR** 中的存储地址。

ROM[EADRH, EADRL]→[EDATH, R], 即把 ROM 地址[EADRH, EADRL]中的值高 8 位赋给 SFR 的 EDATH, 低 8 位赋值给 SRAM 的 R 地址

举例:将程序存储器地址 0123h 中的数据传送到 SFR 的 EDATH 和 55h,然后再将高 8 位数据赋值给 ACC

MOV A,#0x01

MOV EADRH,A //send ROM Hbyte address to EADRH

MOV A,#0x23

MOV EADRL, A //send ROM Lbyte address to EADRL

MOVC 0x55

MOV A, EDATH //send Hbyte data to ACC

5.5 SFR

特殊功能寄存器(SFR)包含系统专用寄存器和辅助专用寄存器,详细描述如下所示: 表 4 寄存器列表 (SFR)

地址	符号	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值
1080h	IAR0		通过{M	PH0,MPL	0}访问数据[区(不是一个	实际的物	理地址)		xxxx xxxx
1082h	MPL0				MPL0	[7:0]				xxxx xxxx
1083h	MPH0				MPHO	[7:0]				xxxx xxxx
1086h	STATUS	SPDF	-	-	-	-	Z	DC	С	0xxx
1087h	ACC				ACC	[7:0]				xxxx xxxx
1088h	PCL				PCL[7:0]				0000 0000
1089h	DPAGE	-	1	-	-	-	_	-	DPAGE	0
108Bh	IE0	GIE/GIEL	GIEH	1	INT1IE	INT0IE	-	T1IE	TOIE	00-0 0-00
108Ch	IF0	-	1	-	INT1IF	INT0IF	-	T1IF	T0IF	0 0-00
108Dh	IE1	-	-	-		_	-	ADCIE	THIE	00
108Eh	IF1	-	-	-	-	-	-	ADCIF	THIF	00
1091h	IP0	IPEN	-	-	INT1IP	INT0IP	-	T1IP	T0IP	00 0-00
1092h	IP1	-	-	-	_	- (-	ADCIP	THIP	00
1094h	INTS	-	-	-		INT18	S[1:0]	INT0	S[1:0]	0000
1095h	INTEN	-	-	-	EINT[1:0]					00
1096h	WDTCON	LRCEN	WDTSEL	WDTEN	ТО	PD		PS[2:0]		1011 1111
1098h	BDGC				BDGC	[7:0]				xxxx xxxx
1099h	P0	-	-			P0[5	:0]			xx xxxx
109Ah	P0OD	-	-	-		P	0OD[4:0]			0 0000
109Bh	P0PH	-	-			P0PH[5:0]			11 1111
109Ch	P0PD	-	-			P0PD[5:0]			00 0000
109Dh	P00E	_	_	-		P	00E[4:0]			1 1111
109Fh	P0WK	-	1			P0WK[[5:0]			00 0000
10A0h	P1				P1[7	7 :0]				xxxx xxxx
10A1h	P1OD				P10D	[7:0]				0000 0000
10A2h	P1PH				P1PH	[7:0]				1111 1111
10A3h	P1PD		P1PD[7:0]							0000 0000
10A4h	P10E		P10E[7:0]							
10A6h	P1WK			P1WK[7:0]						
10B6h	T0CON0	-	-	T0FS[2:0] T0EN						
10B9h	T0C				T0C[7:0]				0000 0000
10BAh	T00VR				TOOVE	R[7:0]				xxxx xxxx

PT8M2302 规格书

10BDh	T1CON0	-	_	-	-		T1FS[2:0]		T1EN	0000		
10BEh	T1CON1	-	-	-	PWM4EN	PWM3EN	PWM2EN	PWM1EN	PWM0EN	0 0000		
10BFh	T1CON2	-	-	-	PWM4S	PWM3S	PWM2S	PWM1S	PWM0S	0 0000		
10C0h	T10VRL				T10VR	L[7:0]				xxxx xxxx		
10C1h	T10VRH		- T10VRH[1:0]									
10C2h	T1CL		T1CL[7:0]									
10C3h	T1CH				-			T1CH	H[1:0]	00		
10C4h	T1D0L				T1D0L	[7:0]	2//			xxxx xxxx		
10C5h	T1D0H				-			T1D0	H[1:0]	xx		
10C6h	T1D1L				T1D1L	[7:0]				xxxx xxxx		
10C7h	T1D1H		- T1D1H[1:0]						xx			
10C8h	T1D2L		T1D2L[7:0]						xxxx xxxx			
10C9h	T1D2H		- T1D2H[1:0]							xx		
10CAh	T1D3L		T1D3L[7:0]									
10CBh	T1D3H				-			T1D3	H[1:0]	xx		
10CCh	T1D4L				T1D4L	[7:0]				xxxx xxxx		
10CDh	T1D4H				-	٠. (T1D4	H[1:0]	xx		
10DBh	ADCON0	A	DCCK[2:0	0]	ADCE		ADCS	PT[3:0]		0000 0000		
10DCh	ADCON1	ADCVO	-	-	ADCS	ADCEN	AE	CVREF[2	1:0]	00 0000		
10DDh	ADCON2		-	ADCCUR	ADCCALD		ADCC	AL[3:0]		00 0000		
10DEh	ADCON3	_	_	-	-	-	AE	CADDR[2	2:0]	000		
10DFh	ADCCH0	-	-	-	-		ADCC	H0[3:0]		0000		
10E3h	ADCOL				ADCOL	_[7:0]				0000 0000		
10E4h	ADCOH	-	_	-	-		ADCC	H[3:0]		0000		
10F2h	EADRH				EADRH	H[7:0]				xxxx xxxx		
10F3h	EADRL		EADRL[7:0]									
10F4h	EDATH				EDATH	I[7:0]				xxxx xxxx		
10F5h	LVDCON	_	_		-	LVDOUT	LVDEN	LVDSI	EL[1:0]	0000		

说明:

- : 无效位,回读为'0'

x : 不定态

5.6 OPTION配置选项

表 5 配置选项 0(7F8h)

名称	位	默认值	说明
			RC8M 时钟及 32K 内部时钟输出使能
OSC_OUT	[15]	0	1: RC8M 时钟通过 P01 输出, RC32K 时钟通过 P02 输出
			0: P02、P01 不输出时钟
			低电压复位使能位
LVREN	[14]	1	1: 使能 LVR
			0: 关闭 LVR
			低电压复位点选择
			000: 2.0V
			001: 2.2V
			010: 2.4V
LVRSEL[2:0]	[13:11]	001	011: 2.7V
			100: 2.9V
			101: 3.1V
			110: 3.3V
			111: 3.6V
			PWRT & WDT 计数周期选择位 (其值必须是分频率的倍数)
			11: PWRT = WDT prescaler rate = 18ms (default)
SUT[2:0]	[9:8]	11	10: PWRT = WDT prescaler rate = 9ms
			01: PWRT = WDT prescaler rate = 288ms
			00: PWRT = WDT prescaler rate = 144ms

表 6 配置选项 1(7F9h)

名称	位	默认值	说明
			BANDGAP 修调功能屏蔽位
BDGC_ID	[15]	1	1: BANDGAP 修调功能屏蔽
			0: BANDGAP 修调功能不屏蔽
			选择 CMOD 口作为触摸/AD 模拟口或数字输入口
CMODFS	[13]	1	0: 作为数字输入口
			1: 作为触摸/AD 模拟口
			代码保护选择位
PROTECT	[10]	1	1: 代码不加密 MTP code protection off (默认)
			0: 代码加密 MTP code protection on
			INT1 输入脚选择位
INT1SEL	[9]	0	1: INT1 从 P02 脚输入
			0: INT1 从 P01 脚输入
			指令周期选择位(Instructions Period Select)
			= 11: 4T: 4 个 RC8M 周期 (默认)
IPSEL[1:0]	[3:2]	11	= 10: 2T : 2 个 RC8M 周期
			= 00: 8T : 8 个 RC8M 周期
			= 01: 16T: 16 个 RC8M 周期

6. 功能模块

6.1 CLOCK

两个时钟源: RC8M、RC32K, 系统时钟结构图如下所示:

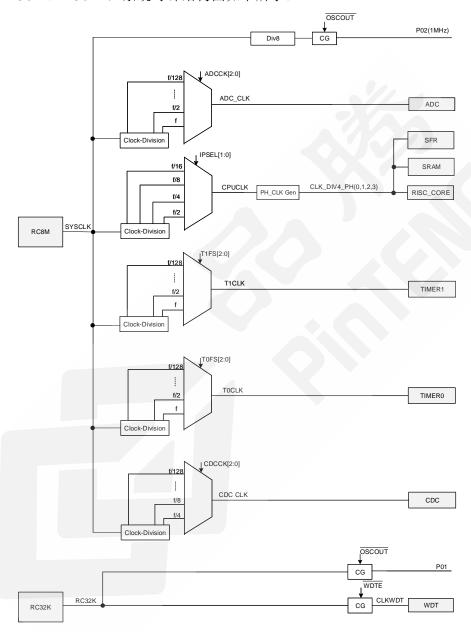
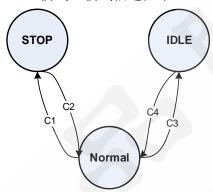


图 6 时钟结构图

当 OPTION 选项中 BDGC_ID=1 时,BANDGAP 修调无效; 当 OPTION 选项中 BDGC_ID=0 时,BANDGAP 修调有效; 修调配置寄存器为:

• BANDGAP 调整寄存器(BDGC, 1098h):


BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name		BDGC[7:0]									
Access				!	R/W						
Default				(Dxxx						

Bit[7:0] BDGC: 内部 BANDGAP 调整寄存器(BANDGAP Calibration)

说明: BDGC 读的值是 OPT_BG 的 8 位,不是 BDGC 寄存器的值

6.2 工作模式

支持 Normal 模式、STOP 模式、IDLE 模式,模式描述如下:

C1:执行STOP指令 C2:从STOP模式唤醒 C3:执行IDLE指令 C4:从IDLE模式唤醒

图 7 工作模式转换图

- STOP 模式下, CPU 及外设都停止工作, PD 位清零, TO 位置 1, 看门狗清零同时保持运行状态, RC8M 停振, I/O 维持原状:
 - ▶ 外部中断 0 低电平、外部中断 1 低电平可唤醒 STOP 模式。
 - ▶ WDT 溢出可唤醒 STOP 模式。
 - ▶ IO 口电平变化可唤醒 STOP 模式。
- IDLE 模式下,除 CPU 外,其它外设都可工作:
 - ▶ 所有中断都可唤醒 IDLE 模式。
 - ▶ WDT溢出可唤醒 IDLE模式。
 - ▶ IO 口电平变化可唤醒 IDLE 模式。

6.3 INT

系统有6种中断源:

- 1) 定时器 T0 溢出中断
- 2) 定时器 T1 溢出中断
- 3) INTO 中断
- 4) INT1 中断
- 5) ADC 中断
- 6) 触摸中断

6.3.1中断功能

- 1. IF0/1 为中断标志寄存器,决定该寄存器所发生的中断状态。IE0/IE1 为中断使能寄存器。IPEN 为中断优先级控制寄存器。
- 2. 中断允许总控位 GIE/GIEL 有两个功能: 当 IPEN 为低电平时,其为全局中断使能位;当 IPEN 为高电平时,其为低优先级中断全局使能位。
- 3. 中断允许总控位 GIEH: 当 IPEN 为高电平时,其为高优先级中断全局使能位。
- 4. 支持两种中断优先级(高和低),所有中断源都可单独配置为高优先级或低优先级。允许低优先级中断服务程序嵌套高优先级中断服务程序,不允许同优先级之间的中断嵌套。
- 5. 两个中断入口地址: 008h 和 018h。当 IPEN 为低电平时,入口地址为 008h; 当 IPEN 为高电平时,默认入口地址为 008h(所有中断源默认为低优先级),当某个中断源切换到高优先级时,中断入口地址切换到 018h。
- 6. 进入中断服务程序前,PC、ACC、STATUS及 DPAGE 会被压栈保护。
- 7. 当中断优先级 IPEN 为低电平时,所有中断源都为低优先级(软件错误地配置为高优先级时,硬件将强行将其变为低优先级)。
- 8. call 指令堆栈满后产生中断,中断不会立即响应,需要等到 call 指令出栈后再响应中断。
- 9. call 指令 7 级堆栈后,产生低优先级中断,在低优先级中断处理过程中高优先级中断无法响应。

6.3.2中断寄存器

中断模块相关寄存器:

地址	符号	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值
108Bh	IE0	GIE/GIEL	GIEH	-	INT1IE	INT0IE	-	T1IE	TOIE	00-0 0-00
108Ch	IF0	-	-	-	INT1IF	INT0IF	-	T1IF	T0IF	0 0-00
108Dh	IE1	-	-	-	-	-	-	ADCIE	THIE	00
108Eh	IF1	-	-	-	-	-	-	ADCIF	THIF	00
1091h	IP0	IPEN	-	-	INT1IP	INT0IP	-	T1IP	T0IP	00 0-00
1092h	IP1	-	-	-	-	-	-	ADCIP	THIP	00
1094h	INTS	-	-	-	-	INT1S	[1:0]	INT0S	[1:0]	0000
1095h	INTEN	-	-	-	_	-	-	EINT[[1:0]	00

• 中断屏蔽寄存器 0(IE0, 108Bh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	GIE/GIEL	GIEH	1	INT1IE	INT0IE	1	T1IE	T0IE
Access	R/W	R/W	-	R/W	R/W	-	R/W	R/W
Default	0	0	-	0	0	-	0	0

Bit[7] GIE/GIEL: 中断允许控制位

当 IPEN 为低电平时:

1: 使能所有没有屏蔽的中断

0: 禁止所有中断

当 IPEN 为高电平时:

1: 使能所有低优先级中断

0: 禁止所有低优先级中断

Bit[6] GIEH: 高优先级中断允许控制位

1: 使能所有高优先级中断

0: 禁止所有高优先级中断

Bit[4] INT1IE: INT1 中断屏蔽位

1: 使能外部中断 1

0: 禁止外部中断 1

Bit[3] INTOIE: INTO中断屏蔽位

1: 使能外部中断 0

0: 禁止外部中断 0

Bit[1] T1IE: TIMER1 溢出中断屏蔽位

1: 使能 TIMER1 溢出中断

0: 禁止 TIMER1 溢出中断

Bit[0] **TOIE:** TIMERO 溢出中断屏蔽位

1: 使能 TIMERO 溢出中断

0: 禁止 TIMER0 溢出中断

• 中断屏蔽寄存器 1(IE1, 108Dh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	_	-	-	-	ADCIE	THIE
Access	-	-	-	-	-	-	R/W	R/W
Default	-	-	-	-	-	-	0	0

Bit[1] ADCIE: ADC 中断屏蔽位

1: 使能 ADC 中断

0: 禁止 ADC 中断

Bit[0] THIE: 触摸中断屏蔽位

1: 使能触摸中断

0: 禁止触摸中断

• 中断标志寄存器 0(IF0, 108Ch):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	INT1IF	INT0IF	ı	T1IF	T0IF
Access	-	-	-	R/W	R/W	-	R/W	R/W
Default	-	-	-	0	0	-	0	0

Bit[4] **INT1IF:** 外部中断 1 标志,软件写 0 清,写 1 无效

Bit[3] **INTOIF**: 外部中断 0 标志, 软件写 0 清, 写 1 无效

Bit[1] **T1IF**: TIMER1 溢出中断标志,软件写 0 清,写 1 无效

Bit[0] **TOIF:** TIMERO 溢出中断标志,软件写 0 清,写 1 无效

中断标志寄存器 1(IF1, 108Eh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	1	-	-	-	ADCIF	THIF
Access	-	-	-	-	-	-	R/W	R/W
Default	-	-	-	-	-	-	0	0

Bit[1] ADCIF: ADC 中断标志, 软件写 0 清, 写 1 无效

Bit[0] THIF: 触摸中断标志,软件写 0 清,写 1 无效

• 中断优先级控制寄存器 0(IP0, 1091h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	IPEN	_	-	INT1IP	INT0IP	-	T1IP	T0IP
Access	R/W	-	-	R/W	R/W	-	R/W	R/W
Default	0	-	-	0	0	-	0	0

Bit[7] IPEN: 中断优先级使能位

1: 使能中断优先级

0: 禁止中断优先级

Bit[4] INT1IP: INT1中断优先级选择位

1: INT1 中断为高优先级

0: INT1 中断为低优先级

Bit[3] INTOIP: INTO 中断优先级选择位

1: INTO 中断为高优先级

0: INT0 中断为低优先级

Bit[1] **T1IP:** T1 中断优先级选择位

1: T1 中断为高优先级

0: T1 中断为低优先级

Bit[0] TOIP: TO 中断优先级选择位

1: T0 中断为高优先级

0: T0 中断为低优先级

• 中断优先级控制寄存器 1(IP1, 1092h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	1	-	1	1	-	ADCIP	THIP
Access	-	1	-	1	1	-	R/W	R/W

						1		
Default	-	-	-	-	-	-	0	0

Bit[1] ADCIP: ADC 中断优先级选择位

1: ADC 中断为高优先级

0: ADC 中断为低优先级

Bit[0] THIP: 触控中断优先级选择位

1: 触控中断为高优先级

0: 触控中断为低优先级

• 外部中断触发方式选择寄存器(INTS, 1094h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name			-	INT1S[1:0]		INT0S[1:0]		
Access	-		-		R/W		R/	W
Default	-	-	-		00		0	0

Bit[3:2] INT1S: 外部中断 1 触发方式选择

00: 低电平触发

01: 下降沿触发

10: 上升沿触发

11: 下降沿或上升沿触发

Bit[1:0] INTOS: 外部中断 0 触发方式选择

00: 低电平触发

01: 下降沿触发

10: 上升沿触发

11: 下降沿或上升沿触发

• 外部中断触发方式选择寄存器(INTEN, 1095h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-		-		EINT[1:0]	
Access	-		-		-		R/	W
Default	-		-		-		00	

Bit[1:0] **EINT:** 外部中断使能选择

Bit[1]: 外部中断 1 使能,高有效 Bit[0]: 外部中断 0 使能,高有效

- 说明: 当系统从中断子程序返回时需要将对应的中断标志位清零,只能采用如下几种方式:
 - 1. MOV 指令清相应的中断标志位。以清 TOIF 为例,清除方法如下所示:

MOV A, #0xFE

MOV IF0,A

- 2. BCLR 指令清相应的中断标志位。以清 T0IF 为例,清除方法如下所示: BCLR IF0.0
- 3. ANDR, XORR 指令清相应中断标志位。以清 TOIF, 且用 ANDR 指令为例, 清除方法如下所示: MOV A, #0xFE ANDR A, IF0

6.4 GPIO

共有两组 GPIO 口, 共 14 个 I/O 口, 其中 P0 口为 6 脚 I/O 口 (P05 只有输入功能), P1 口为 8 脚 I/O 口。

GPIO 模块相关寄存器:

地址	符号	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值
1099h	P0	İ	ı			P0[5:0]				xx xxxx
109Ah	P0OD	-	1	-		P0OI	D[4:0]			0 0000
109Bh	P0PH	-	-			P0PH[5:0]				11 1111
109Ch	P0PD	-	-			P0PD[5:0]	7			00 0000
109Dh	P00E	-	-	-	- P0OE[4:0]					
109Fh	P0WK	-	-			P0WK[5:0]				00 0000
10A0h	P1				P1[7:	0]				xxxx xxxx
10A1h	P10D				P10D[7:0]				0000 0000
10A2h	P1PH				P1PH[7:0]				1111 1111
10A3h	P1PD			P1PD[7:0]						0000 0000
10A4h	P10E			P10E[7:0]						1111 1111
10A6h	P1WK			P1WK[7:0]						0000 0000

• P0 端口读写数据寄存器(P0, 1099h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	-	-	P0[5]			P0[i]			
Access	-	-	R	R/W					
Default	-	-	х			xxxxx			

Bit[5:0] **P0[i]:** P0[i]端口读写数据

读该寄存器:如果是做输入时,读的数据是外部输入;如果是做输出时,读的数据是 P0 寄存器值写该端口,为输出模式时写数据从 PAD 输出

说明: P0[5]为只读,不可写。

• P1 端口读写数据寄存器(P1, 10A0h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name		P1[i]								
Access		R/W								
Default		0xxx								

Bit[7:0] **P1[i]:** P1[i]端口读写数据

读该寄存器:如果是做输入时,读的数据是外部输入;如果是做输出时,读的数据是 P1 寄存器值写该端口,为输出模式时写数据从 PAD 输出

• P0 开漏控制寄存器(P0OD, 109Ah):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name		-		P0OD[i]					
Access		-		R/W					
Default		-				00000			

Bit[4:0] **P0OD[i]:** P0[i]开漏使能

1: 使能

0: 禁止

• P1 开漏控制寄存器(P1OD, 10A1h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name		P10D[i]								
Access		R/W								
Default				0x	00					

Bit[7:0] **P1OD[i]:** P1[i]开漏使能

1: 使能

0: 禁止

• P0 上拉电阻控制寄存器(P0PH, 109Bh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	-	-			P0PH[i]					
Access	-	-			R/	W				
Default	-	-	111111							

Bit[5:0] POPH[i]: PO[i]内部上拉使能

1: 禁止

0: 使能

• P1 上拉电阻控制寄存器(P1PH, 10A2h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name		P1PH[i]							
Access		R/W							
Default		0xFF							

Bit[7:0] **P1PH[i]:** P1[i]内部上拉使能

1: 禁止

0: 使能

• P0 下拉电阻使能寄存器(P0PD, 109Ch):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	-	-	P0PD[i]								
Access	-	-	R/W								
Default	-	-			000	000					

Bit[5:0] **P0PD[i]:** P0[i]的下拉电阻使能

1: 使能下拉电阻

0: 禁止下拉电阻

• P1 下拉电阻使能寄存器(P1PD, 10A3h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name		P1PD[i]								
Access				R/	W					
Default				0x	00					

Bit[7:0] **P1PD[i]:** P1[i]的下拉电阻使能

1: 使能下拉电阻

0: 禁止下拉电阻

• P0 I/O 方向控制寄存器(P0OE, 109Dh):

POOE 设为"1"表示该脚为输入(高阻抗),设为"0"表示该脚为输出,POOE 寄存器可读写,系统复位以后设置为输入(高阻抗)。

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-			P00E[4:0]		
Access	-	-	-			R/W		
Default	-	-				11111		

• P1 I/O 方向控制寄存器(P1OE, 10A4h):

P1OE 设为"1"表示该脚为输入(高阻抗),设为"0"表示该脚为输出,P1OE 寄存器可读写,系统复位以后设置为输入(高阻抗)。

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name				P10	E[i]			
Access				R	W .			
Default				0x	FF			

• P0 唤醒模式使能(P0WK, 109Fh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	-	-	P0WK[i]						
Access	-	-	R/W						
Default	-	-	000000						

Bit[5:0] POWK[i]: PO 电平变化唤醒使能,只有配置为通用 GPIO 功能输入时才有效

1: 使能唤醒

0: 禁止唤醒

• P1 唤醒模式使能(P1WK, 10A6h):

- 7th Dt.								
BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name				P1W	'K[i]			
Access				R/	W			
Default				0x	00			

Bit[7:0] P1WK[i]: P1 电平变化唤醒使能,只有配置为通用 GPIO 功能输入时才有效

- 1: 使能唤醒
- 0: 禁止唤醒

说明:

- 1) P0/P1 有相应的上拉/下控制位(P0PH/P0PD/P1PH/P1PD 寄存器)来设置使能内部上拉。如果设置为输出模式,内部上拉/下拉功能会自动关闭。
- 2) P0/P1 有相应的开漏控制位(P0OD/P1OD 寄存器)来设置使能开漏输出。当开漏配置有效且数据寄存器值为 1 时,即使配置为输出模式,上拉功能也可以开启。

6.5 TIMER

6.5.1TIMER0

定时器 0 为 8 位向上定时器, 其从 TOOVR 开始计数, 当其计数值达到 0xFF 后, 产生 T0 溢出信号。 其特性如下:

- 1. 支持时钟预分频功能;
- 2. 定时功能;

TIMER0 模块相关寄存器:

地址	符号	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值
10B6h	T0CON0	-	-	-	1	Т	0FS[2:	0]	T0EN	0000
10B9h	T0C		T0C[7:0]							0000 0000
10BAh	T00VR		T0OVR[7:0]						XXXX XXXX	

• TIMER0 控制寄存器(T0CON0, 10B6h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	-		T0EN		
Access	-	-	-	-			R/W	
Default	-	-	-	-	0.0	000		0

Bit[3:1] TOFS: TIMERO 工作于定时模式时时钟分频选择

000: 不分频

001: 2分频

010: 4分频

011: 8分频

100: 16 分频

101: 32 分频

110: 64 分频

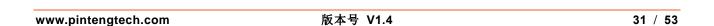
111: 128 分频

Bit[0] TOEN: TIMERO 使能位

1: 使能 TIMER0

0: 禁止 TIMER0

• 定时器计数值(T0C, 10B9h):


BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name		T0C[7:0]								
Access				F	₹					
Default				0x	00					

Bit[7:0] **T0C[7:0]:** TIMER0 计数值

• 定时器计数周期值(T0OVR, 10BAh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name				T00V	R[7:0]			
Access				R/	W			
Default				0x	XX			

Bit[7:0] **T0OVR[7:0]:** 预设置的定时周期寄存器,实际定时周期为: **0xFF-T0OVR+1**(不能设置为 **0xFF)**

1. 定时模式

TIMER0 能被配置为普通的定时模式,当 TIMER0 被启动后,定时周期寄存器 TOOVR 的值将会被 装载到定时器中,当定时器的计数器计满后将产生 TIMER0 溢出信号,同时 TOOVR 将会由硬件重新自动装载到计数器中。

TIMER0 工作于定时模式时的配置流程如下:

- 1. 配置时钟源选择 TOCKS
- 2. 配置 TOOVR;
- 3. 使能 TIMERO;
- 4. 计满溢出后,产生溢出信号。

6.5.2TIMER1

TIMER1 为 10 位向上定时器, 其从 T1OVR 开始计数, 当其计数值达到 0x3FF 后, 产生 T1 溢出信号。其特性如下:

- 1. 支持时钟预分频功能;
- 2. 定时功能;
- 3. 5 路独立的 PWM 输出。

TIMER1 相关 SFR 描述如下:

	,,,,		(加及州)								
地址	符号	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值	
10BDh	T1CON0	1	- /	-	-		T1FS[2:0]		T1EN	0000	
10BEh	T1CON1	1	-	-	PWM4EN	PWM3EN	PWM2EN	PWM1EN	PWM0EN	0 0000	
10BFh	T1CON2	- (-	-	PWM4S	PWM3S	PWM2S	PWM1S	PWM0S	0 0000	
10C0h	T10VRL				Т	10VRL[7:0	0]			xxxx xxxx	
10C1h	T10VRH	-	-	-	-	-	-	T10VF	RH[1:0]	XX	
10C2h	T1CL					T101 [7:0]				0000	
100211	TICL					T1CL[7:0]				0000	
10C3h	T1CH	1	1	-	-	-	-	T1Cl	H[1:0]	00	
10C4h	T1D0L					T1D0L[7:0]				XXXX XXXX	
10C5h	T1D0H	-	-	-	-	-	-	T1D0	H[1:0]	XX	
10C6h	T1D1L					T1D1L[7:0]				xxxx xxxx	
10C7h	T1D1H	-	-	-	-	-	-	T1D1	H[1:0]	XX	
10C8h	T1D2L					T1D2L[7:0]				xxxx xxxx	
10C9h	T1D2H	-	-	-	-	-	-	T1D2	H[1:0]	XX	
10CAh	T1D3L					T1D3L[7:0]				xxxx xxxx	
10CBh	T1D3H	-	-	-	-	-	-	T1D3	H[1:0]	xx	
10CCh	T1D4L					T1D4L[7:0]				xxxx xxxx	
10CDh	T1D4H	-	-	-	-	-	-	T1D4	H[1:0]	XX	

• TIMER1 控制寄存器 0(T1CON0, 10BDh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	-		T1EN		
Access	-	-	-	-	R/W			R/W
Default	-	-	-	-	000			0

Bit[3:1] **T1FS:** 定时器 1 时钟分频选择

000: 不分频

001: 2分频

010: 4分频

011: 8 分频

100: 16 分频

101: 32 分频

110:64 分频

111: 128 分频

Bit[0] T1EN: TIMER1 使能位

1: 使能 TIMER1

0: 禁止 TIMER1

• TIMER1 控制寄存器 1(T1CON1, 10BEh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	1	-	PWM4EN	PWM3EN	PWM2EN	PWM1EN	PWM0EN
Access	-	-	-	R/W	R/W	R/W	R/W	R/W
Default	-	-	-	0	0	0	0	0

Bit[4] PWM4EN: Timer1 PWM4 使能位

1: 使能 Timer1 PWM4 输出

0: 关闭 Timer1 PWM4 输出

Bit[3] PWM3EN: Timer1 PWM3 使能位

1: 使能 Timer1 PWM3 输出

0: 关闭 Timer1 PWM3 输出

Bit[2] PWM2EN: Timer1 PWM2 使能位

1: 使能 Timer1 PWM2 输出

0: 关闭 Timer1 PWM2 输出

Bit[1] PWM1EN: Timer1 PWM1 使能位

1: 使能 Timer1 PWM1 输出

0: 关闭 Timer1 PWM1 输出

Bit[0] PWM0EN: Timer1 PWM0 使能位

1: 使能 Timer1 PWM0 输出

0: 关闭 Timer1 PWM0 输出

• TIMER1 控制寄存器 2(T1CON2, 10BFh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	_	_	-	PWM4S	PWM3S	PWM2S	PWM1S	PWM0S
Access	-	-	-	R/W	R/W	R/W	R/W	R/W
Default	-	-	-	0	0	0	0	0

Bit[4] PWM4S: Timer1 PWM4 输出有效电平选择位

1: 先输出低电平, 占空比为低电平宽度

0: 先输出高电平, 占空比为高电平宽度

Bit[3] PWM3S: Timer1 PWM3 输出有效电平选择位

1: 先输出低电平, 占空比为低电平宽度

0: 先输出高电平, 占空比为高电平宽度

Bit[2] PWM2S: Timer1 PWM2 输出有效电平选择位

1: 先输出低电平, 占空比为低电平宽度

0: 先输出高电平, 占空比为高电平宽度

Bit[1] PWM1S: Timer1 PWM1 输出有效电平选择位

1: 先输出低电平, 占空比为低电平宽度

0: 先输出高电平,占空比为高电平宽度

Bit[0] PWM0S: Timer1 PWM0 输出有效电平选择位

1: 先输出低电平,占空比为低电平宽度

0: 先输出高电平, 占空比为高电平宽度

TIMER1 预设置的周期寄存器(T10VRL, 10C0h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name		T10VRL[7:0]							
Access		R/W							
Default				0x	xx				

Bit[7:0] **T1OVRL[7:0]:** TIMER1 预设置的周期寄存器低 8 位

• TIMER1 预设置的周期寄存器(T1OVRH, 10C1h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	-	-	//-	T10VF	RH[1:0]
Access	-	-	-	-	-	-	R/	W
Default	-	-	-	-		<u></u>	x	X

Bit[1:0] **T1OVRH[1:0]:** TIMER1 预设置的周期寄存器高 2 位

实际周期为: 0x3FF -{T10VRH, T10VRL}+1

• TIMER1 计数寄存器(T1CL, 10C2h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name				T1CI	_[7:0]			
Access				I	٦			
Default				0×	00			

Bit[7:0] **T1CL[7:0]:** TIMER1 计数值低 8 位

• TIMER1 计数寄存器(T1CH, 10C3h):

ВІТ	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	-	-	-	T1CH	H[1:0]
Access	-	-	-	-	-	-	R	
Default	-	-	-	-	-	-	00	

Bit[1:0] **T1CH[1:0]:** TIMER1 计数值高 2 位

实际计数值为: {T1CH,T1CL}

• TIMER1 PWM0 占空比设置寄存器(T1D0L, 10C4h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name				T1D0	L[7:0]			
Access				R/	W			
Default	0xxx							

Bit[7:0] **T1D0L[7:0]:** PWM0 占空比低 8 位, TIMER1 PWM 模式时, PWM0 实际占空比为: ({T1D0H,T1D0L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

• TIMER1 PWM0 占空比设置寄存器(T1D0H, 10C5h):

			•					
BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	-	-	-	T1D0	H[1:0]
Access	-	-	-	-	-	-	R/	W
Default	-	-	-	-	-	-	х	X

Bit[1:0] T1D0H[1:0]: PWM0 占空比高 2 位, TIMER1 PWM 模式时, PWM0 实际占空比为:

({T1D0H,T1D0L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

• TIMER1 PWM1 占空比设置寄存器(T1D1L, 10C6h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		T1D1L[7:0]						
Access		R/W						
Default				0x	XX			

Bit[7:0] **T1D1L[7:0]:** PWM1 占空比低 8 位, TIMER1 PWM 模式时, PWM1 实际占空比为: ({T1D1H,T1D1L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

• TIMER1 PWM1 占空比设置寄存器(T1D1H, 10C7h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	_	-	-	T1D1	H[1:0]
Access	-	-	-	-	J	-	R/W	
Default	-	-	-	_	-	-	х	Х

Bit[1:0] **T1D1H[1:0]:** PWM1 占空比高 2 位, TIMER1 PWM 模式时, PWM1 实际占空比为: ({T1D1H,T1D1L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

• TIMER1 PWM2 占空比设置寄存器(T1D2L, 10C8h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		T1D2L[7:0]						
Access		R/W						
Default				0x	XX			

Bit[7:0] **T1D2L[7:0]:** PWM2 占空比低 8 位, TIMER1 PWM 模式时, PWM2 实际占空比为: ({T1D2H,T1D2L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

• TIMER1 PWM2 占空比设置寄存器(T1D2H, 10C9h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	-	-	-	T1D2	H[1:0]
Access	-	-	_	-	-	-	R/W	
Default	-	-	-	-	-	-	xx	

Bit[1:0] **T1D2H[1:0]:** PWM2 占空比高 2 位, TIMER1 PWM 模式时, PWM2 实际占空比为: ({T1D2H,T1D2L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

• TIMER1 PWM3 占空比设置寄存器(T1D3L, 10CAh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	T1D3L[7:0]							
Access	R/W							
Default	0xxx							

Bit[7:0] T1D3L[7:0]: PWM3 占空比低 8 位, TIMER1 PWM 模式时, PWM3 实际占空比为:

www.pintengtech.com 版本号 V1.4 36 / 53

({T1D3H,T1D3L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

• TIMER1 PWM3 占空比设置寄存器(T1D3H, 10CBh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	-	-	-	T1D3	H[1:0]
Access	-	-	-	-	-	-	R/W	
Default	-	-	-	-	-	-	х	X

Bit[1:0] **T1D3H[1:0]:** PWM3 占空比高 2 位, TIMER1 PWM 模式时, PWM3 实际占空比为: ({T1D3H,T1D3L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

• TIMER1 PWM4 占空比设置寄存器(T1D4L, 10CCh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name		T1D4L[7:0]									
Access		R/W									
Default				0x	xx						

Bit[7:0] **T1D4L[7:0]:** PWM4 占空比低 8 位, TIMER1 PWM 模式时, PWM4 实际占空比为: ({T1D4H,T1D4L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

TIMER1 PWM4 占空比设置寄存器(T1D4H, 10CDh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	-	-	-	-	-	-	T1D4	H[1:0]
Access	-	<u>-</u>	-	-	-	-	R/W	
Default	-	-	-	-	-	-	Х	X

Bit[1:0] **T1D4H[1:0]:** PWM4 占空比高 2 位, TIMER1 PWM 模式时, PWM4 实际占空比为: ({T1D4H,T1D4L}-{T1OVRH,T1OVRL}+1) / (0x3FF -{T1OVRH,T1OVRL} +1)

1. 定时模式

定时器 TIMER1 能被配置为普通的定时模式,当 TIMER1 被启动后,定时周期寄存器的值将会被装载到定时器中,当定时器的计数器计满后将产生 TIMER1 溢出信号,同时周期寄存器将会由硬件重新自动装载到计数器中,然后启动向上计数。

TIMER1 工作于定时模式时的配置流程如下:

- 1. 配置时钟源选择 T1CKS
- 2. 配置 T1OVR;
- 3. 使能 TIMER1;
- 4. 计满溢出后,硬件产生 T1 溢出信号。

2. PWM 模式

定时器 TIMER1 能被配置为 PWM 模式,用于 5 路独立的 PWM 输出。其有自动装载功能,即当 TIMER1 被启动后,PWM 载波周期寄存器的值及 5 路 PWM 占空比的值将会被装载到定时器 TIMER1 中,当定时器计满后,PWM 载波周期寄存器及 5 路 PWM 占空比的值将会由硬件重新自动装载到计数器中,然后启动向上计数。

TIMER1 工作于 PWM 模式时的配置流程如下:

- 1. 配置时钟源选择 T1CKS
- 2. 配置 T1OVR ,T1Dx;
- 3. 配置 PWMxS:
- 4. 使能 PWMxEN;
- 5. 使能 TIMER1;

周期为(0xFF-T1OVR+1), PWMx 高电平脉宽为 T1Dx。PWMx 波形输出如下:

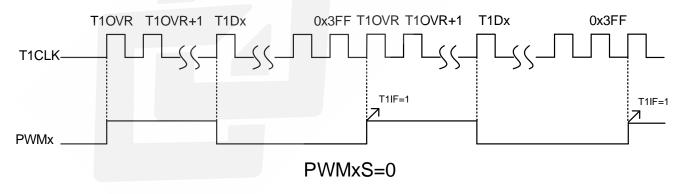


图 8 PWM 输出时序图

6.6 LVD

提供 4 档电压检测(LVD)功能,当 LVD 检测有效,LVDCON.LVDOUT 标识将会自动置位为 1。

• LVD 控制寄存器(LVDCON, 10F5h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name			-		LVDOUT	LVDEN	LVDSEL[1:0]	
Access			-		R	R/W	R	/W
Default	-				0	0	(00

Bit[3] LVDOUT: 低压检测标志位

1: 低压检测有效

0: 低压检测无效

Bit[2] LVDEN: 低电压检测使能位

1: 使能 LVD

0: 关闭 LVD

Bit[1:0] LVDSEL: 低电压检测点选择

00: 2.3V

01: 2.5V

10: 2.9V

11: 4.3V

6.7 TOUCH

触摸模块(TOUCH)采用电容数字转换器(Cap Digtal Convertor, CDC)结构,把触摸通道的电容值转换为计数值,程序读取其数值后进行算法处理,实现稳定可靠的触摸按键检测,最多支持 12 个通道。

6.8 ADC

集成了一个 12 位 SAR ADC, 相关 SFR 描述如下:

ADC 模块相关寄存器:

		1								
地址	符号	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值
10DBh	ADCON0	ADCCK[2:0]			ADCE	А	ADCSPT[3:0]			0000 0000
10DCh	ADCON1	ADCVO	-	-	ADCS	ADCEN	ADC	VREF[2	2:0]	00 0000
10DDh	ADCON2	-	-	- ADCCUR ADCCALD ADCCAL[3:0]		00 0000				
10DEh	ADCON3	-	-	-	-	-	ADC	ADDR[2:0]	000
10DFh	ADCCH0	-	-	-	-	Α	DCCH	0[3:0]		0000
10E3h	ADCOL				ADCOL[7:0)]	4			0000 0000
10E4h	ADCOH	-	-	-	-	А	DCOF	H[3:0]		0000

ADC 控制寄存器 0(ADCON0, 10DBh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	,	ADCCK[2:0]		ADCE	ADCSPT[3:0]					
Access	R/W			R/W	R/W					
Default		000		0	0000					

Bit[7:5] ADCCK: ADC 时钟选择(ADC Clock)

000: f_{ADC}=f_{RC8M}

001: f_{ADC}=f_{RC8M} /2

010: fadc=frc8m /4

011: f_{ADC}=f_{RC8M} /8

100: fadc=frc8M /16

101: f_{ADC}=f_{RC8M} /32

110: fadc=frc8M /64

111: fadc=frc8m /128

Bit[4] ADCE: ADC 转换完成标志位(ADC End)

1: ADC 转换完成,由软件清 0;每次重新启动 ADCS 时硬件会清 ADCE

0: ADC 转换未完成

Bit[3:0] ADCSPT: ADC 采样时间周期选择(ADC Sample Period)

采样时间=(ADCSPT[3:0]+1)*T, T 为 ADC 时钟, 软件需配置此选项, 例如: ADCSPT[3:0]=8 ADC 转换完成时间=采样时间+比较时间(14 个 ADC 周期)=(ADCSPT[3:0]+1+14)*T

• ADC 控制寄存器 1(ADCON1, 10DCh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	ADCVO	-	-	ADCS	ADCEN	ADCVREF[2:0]		
Access	R/W	-	-	R/W	R/W	R/W		
Default	0	-	-	0	0	000		

Bit[7] ADCVO: ADC 参考电压端口输入输出选择位(ADC Vref Output)

0: VREF 端口不输出参考电压

1: VREF 端口输出参考电压

(配置 VREF 端口输出参考电压前需要将 VREF 端口先配置成 ADC 通道)

Bit[4] ADCS: ADC 转换启动位(ADC Start)

0: 未启动转换

1: 启动转换(硬件不会清0此位,由软件清0终止转换)

Bit[3] ADCEN: ADC 使能位(ADC Enable)

1: 使能 ADC

0: 禁止 ADC

Bit[2:0] ADCVREF: ADC 参考电压选择位(ADC Vref Select)

000: 选择 VDD 做为参考电压

001: 选择外部参考电压 Vref

011: 选择内部基准电压 2.048V 做为参考电压

Others: 无参考电压

• ADC 控制寄存器 2(ADCON2, 10DDh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	-	-	ADCCUR	ADCCAL D	ADCCAL[3:0]					
Access	-	1	R/W	R/W	R/W					
Default	-	-	0	0	00000					

Bit[5] ADCCUR: ADC 电流选择位(ADC Current Select)

1: ADC 模块电流 0.5mA

0: ADC 模块电流 1mA

Bit[4] ADCCALD: ADC 失调校准的校准方向(ADC Offset Calibration Direction)

1: 负向校准

0: 正向校准

Bit[3:0] ADCCAL: ADC 失调校准的校准值(ADC Offset Calibration)

失调电压值调整,绝对值越大,失调电压调整越大

ADC 控制寄存器 3(ADCON3, 10DEh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name			-	ADCADDR[2:0]				
Access			<u>-</u>	R/W				
Default			-		000			

000: 选择外部输入通道 0 (ADC0)

001: 选择外部输入通道 1 (ADC1)

010: 选择外部输入通道 2 (ADC2)

011: 选择外部输入通道 3 (ADC3)

101: 选择内部特殊通道(内部 VDD/4)

110: 选择内部特殊通道(GND)

others: No define

www.pintengtech.com 版本号 V1.4 42 / 53

ADC 通道配置寄存器 0(ADCCH0, 10DFh):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	-	-	-	-	ADCCH0[3:0]				
Access	-	-	-	-	R/W				
Default	-	-	-	-	0000				

Bit[3] ADCCH0[3]: AD3 对应的 IO 口做为 ADC 功能,高电平有效 Bit[2] ADCCH0[2]: AD2 对应的 IO 口做为 ADC 功能,高电平有效 Bit[1] ADCCH0[1]: AD1 对应的 IO 口做为 ADC 功能,高电平有效 Bit[0] ADCCH0[0]: AD0 对应的 IO 口做为 ADC 功能,高电平有效

• ADC 转换结果低 8 位寄存器(ADCOL, 10E3h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name		ADCOL[7:0]								
Access		R								
Default				0x	00					

Bit[7:0] ADCOL: ADC 转换结果低 8 位

• ADC 转换结果高 4 位寄存器(ADCOH, 10E4h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	-	-	_	-	ADCOH[3:0]					
Access	-	_	-	-	R					
Default	-	-	-		0000					

Bit[3:0] **ADCOH:** ADC 转换结果高 4 位

其与 ADCOL 组成 12 位转换结果值:{ADCOH[3:0], ADCOL[7:0]}

ADC 配置流程:

- 1. ADC 失调校准:上电时进行校准,只需校准一次。
- 1) 配置 ADC 时钟(ADCCK)和采样时间周期(ADCSPT)。
- 2) 配置 ADC 参考电压 ADCVREF 为内部基准。
- 3) 使能 ADC (ADCEN=1),设置输入通道为内部 GND。
- 4) 软件等待 100us 左右, 即等待 AD 初始化稳定。
- 5) 启动 ADC 连续转换。
- 6) 失调校准:
 - a) 初始化校准量为正向校准最大值: ADCCON2[4:0]=0FH;
 - b) 逐位从正向最大校准量调整到负向最大校准量,即 ADCCON2[4:0]校准顺序为 0FH→00H→10H→1FH,找到第一个 ADC 转换结果为 1 对应的校准量即为目标值,如果未找 到 1 值,则找 2 值。若两者均未找到则校准量 00H 为目标值

2. ADC 单次转换应用时的配置流程如下:

- 1) 配置 ADC 时钟(ADCCK)和采样时间周期(ADCSPT)。
- 2) 配置 ADC 通道 ADCCHx 和 ADCADDR。
- 3) 配置 ADC 参考电压 ADCVREF。
- 4) 使能 ADC (ADCEN=1), 如需中断则 ADCIE =1。
- 5) 软件等待 100us 左右, 即等待 AD 初始化稳定。
- 6) 配置 ADCON1 的 ADCS=1, 启动 ADC 转换, 直到软件清 0 才停止 ADC 转换。 不开 ADC 中断时: 判断 ADCE 是否置 1, 置 1 则可以读取 ADC 转换数据。 开 ADC 中断时: 直接进中断读取 ADC 转换数据。
- 7) 软件清 ADCE 及 ADCS, 完成一次 ADC 序列转换。

3. ADC 连续转换应用时的配置流程如下:

- 1) 配置 ADC 时钟(ADCCK)和采样时间周期(ADCSPT)。
- 2) 配置 ADC 通道 ADCCHx 和 ADCADDR。
- 3) 配置 ADC 参考电压 ADCVREF。
- 4) 使能 ADC (ADCEN=1), 同时 ADC 中断也要打开 (ADCIE=1)。
- 5) 软件等待 100us, 即等待 AD 初始化稳定。
- 6) 配置 ADCON1 的 ADCS=1,启动 ADC 转换(连续转换时 ADCS 只需启动一次,以后一直保持为 1,软件清 0 才停止 ADC 转换),中断发生后进中断程序读取 ADC 转换数据。

6.9 WDT

看门狗定时器(WDT)无需任何外部电路即可工作,睡眠模式同样工作,启用看门狗使超时发生后 MCU 重启复位。

在一般操作或睡眠模式情况下,看门狗定时器溢出会导致 MCU 复位同时 TO 位被清零。

看门狗溢出时间可以通过配置选项 0 的 SUT[1:0]设置为 18ms、9ms、288ms、144ms,溢出周期变长可以通过设置 WDTCON .PS[2:0]使看门狗定时器分频最大达到 1:128,溢出周期最大为 36.8 秒。STOP 下的 WDT 溢出复位会导致芯片复位,在进睡眠之前还没完成的操作不会再继续。

CLRWDT 指令能使 WDT 和预置器清零。

STOP 指令能使 WDT 和预置器清零。

WDT 相关寄存器:

• WDT 控制寄存器(WDTCON, 1096h):

BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	LRCEN	WDTSEL	WDTEN	TO	PD		PS[2:0]	
Access	R/W	R/W	R/W	R	R	R/W		
Default	1	0	1	1	1	111		

Bit[7] LRCEN: 内部 RC32K 时钟使能位

1: 使能 RC32K 时钟

0: 禁止 RC32K 时钟

Bit[6] WDTSEL: WDT 功能选择位

1: WDT 溢出唤醒,可以唤醒 IDLE 或 STOP 模式

0: WDT 溢出复位

Bit[5] WDTEN: WDT 使能位

1: 使能 WDT

0: 禁止 WDT

Bit[4] **TO:** 时间溢出标志

1: 当系统上电时或执行 "CLRWDT"或 "STOP"指令后

0: 看门狗定时器溢出

Bit[3] **PD:** Powerdown flag bit

1: 当系统上电时或执行"CLRWDT"指令后

0: 当执行"STOP"指令后

Bit[2:0] **PS[2:0]:** WDT 时钟分频选择控制位

000: WDT Rate=1:1

001: WDT Rate=1:2

010: WDT Rate=1:4

011: WDT Rate=1:8

100: WDT Rate=1:16

101: WDT Rate=1:32

110: WDT Rate=1:64

111: WDT Rate=1:128

6.10 复位方式

有 3 种复位方式:

- 1. 上电复位(POR): 上电过程中电压低于某一电压值使芯片保持复位,直到高于 POR 门限。
- 2. 低压复位(LVR): 当检测到电压低于某一电压值时会对芯片复位,保证芯片只在正常电压范围内工作
- 3. 看门狗 WDT 溢出复位:看门狗超时后 MCU 重启复位

根据不同的复位方式硬件对 TO 和 PD 位置 1 或清零。

TO、PD 状态位影响事件

No.	事件	то	PD
1	Power-on	1	1
2	WDT Time-Out	0	u
3	STOP instruction	1	0
4	CLRWDT instruction	1	1

复位时序:

- 1. 复位锁存器置 1, PWRT&OST 清零
- 2. 当内部的 POR、LVR、外部复位或 WDT 溢出复位脉冲加载完成后, PWRT 开始计数
- 3. PWRT 溢出以后, OST 开始计数延迟
- 4. OST 延迟完成以后,复位锁存器清零芯片最后得到的复位信号

PWRT(Power-up Reset TIMER): 上电复位计数器

上电复位计数器延迟时间由 SUT[2:0]设置,只要 PWRT 在运行,IC 就一直保持在复位状态。 Vdd、温度和其它变化而会影响 PWRT 控制 IC 的延迟时间。

上电复位时间:

Oscillator Mode	POR/LVR	WDT time-out Reset
RC	18ms /9ms /288 ms /144ms	140 us

OST(Oscillator Start-up TIMER): 振荡启动计数器

在上电过程中,PWRT 延迟时间(18/9/288/144ms)之后振荡启动计数器会再提供一个 64 个周期的延迟以使内部 RC8M 时钟稳定,当 OST 计数时,IC 保持为复位状态,直到 OST 计满后复位撤除。另外 RC8M 信号振幅需达到振荡器输入最大振幅后,OST 计数器才开始计数。

7. 电气特性

7.1 电气特性极限参数

表 7 极限参数

参数	标号	条件	范围	单位
供电电压	V_{DD}	1	-0 to +6.0	V
输入电压	Vı	所有 I/O口	-0.3 to V _{DD} + 0.3	V
工作温度	T _A	-	-40 to + 85	${\mathbb C}$
储藏温度	T _{STG}	-	-40 to + 125	$^{\circ}$ C

7.2 直流特性

表 8 如无特殊说明 V_{DD} = 2.5V~5.5V, Temp = 25°C

参数	标号	条件	最小值	典型值	最大值	单位
工作中区	V	TOUCH Enable	2.5	5	5.5	V
工作电压	V_{DD}	ADC Enable	2.7	5	5.5	V
CPU 时钟	Fcpu	V _{DD} =2.4V~5.5V		4		MHz
输入高电压	ViH		0.75*V _{DD}		1.0*V _{DD}	V
输入低电压	VIL		0		0.25*V _{DD}	V
IO 输出拉电流 (P00~P04,P16~P17)	Іон	V _{DD} =5V, VOH=0.7 V _{DD}		15		mA
IO 输出拉电流 (P10~P15)	Іон	V _{DD} =5V, VOH=0.7 V _{DD}		4		mA
IO 输出灌电流	I _{OL}	V _{DD} =5V, VOL=0.3 V _{DD}		30		mA
输入上拉电阻	Rрн	V _{DD} =5V		30		ΚΩ
输入下拉电阻	Rpl	V _{DD} =5V		30		ΚΩ
	Inm	Normal mode, V _{DD} =5V, ADC enable SYS_CLK=4M		3.5		
正常工作模式电流		Normal mode, V _{DD} =5V, ADC disable SYS_CLK=4M		2.5		mA
正由工厂供入公司师	INIVI	Normal mode, V _{DD} =3V, ADC enable SYS_CLK=4M		3		IIIA
		Normal mode, V _{DD} =3V, ADC disable SYS_CLK=4M		2.5		
		STOP mode, V _{DD} =5V, WDT enable SYS_CLK=4M (144mS 溢出唤醒)		3		
低功耗模式电流	lau	STOP mode, V _{DD} =5V, WDT disable SYS_CLK=4M		0.5		
	Ism	STOP mode, V _{DD} =3V, WDT enable SYS_CLK=4M (144mS 溢出唤醒)		1.5		uA
		STOP mode, V _{DD} =3V, WDT disable SYS_CLK=4M		0.2		

7.3 振荡器特性

表 9 如无特殊说明 V_{DD} =5.0V, TA = 25°C

参数	标号	条件	最小值	典型值	最大值	单位
高速时钟精度		V _{DD} =5.0V T=25 °C	-0.5	I	0.5	%
□ 商迷叫钾精及 ■		V _{DD} =2.5V~5.5V T=-40~85 °C	-2	I	+2	%
低速时钟精度		V _{DD} =5.0V T=25 °C	-15	_	+15	%
		V _{DD} =2.5V~5.5V T=-40~85 °C	-30	_	+30	%

7.4 ADC特性

表 10 如无特殊说明 V_{DD} =5.0V, TA = 25°C

参数	标号	条件	最小值	典型值	最大值	单位
工作电压范围	V_{AD}		2.7	5.0	5.5	V
精度	N _R	V _{REF} =5.0V		11	12	bit
输入电压	Vain		GND		V _{Ref}	V
输入电阻	Rain	V _{IN} =5.0V	2			МΩ
内部参考电压	V _{REFIN}	VDD=5.0V	2.028	2.048	2.068	V
内部参考电压精度			-1		+1	%
输入源推荐阻抗	Zain			1		kΩ
微分非线性误差	DLE	VDD=5.0., V _{REF} =5.0V ADC_CLK≤2MHz			±2	LSB
积分非线性误差	ILE	VDD=5.0V, V _{REF} =5.0V ADC_CLK≤2MHz			±3	LSB
满刻度误差	E _F	VDD=5.0V, V _{REF} =5.0V ADC_CLK≤2MHz		±1	±3	LSB
偏移量误差	Ez	VDD=5.0V, V _{REF} =5.0V ADC_CLK≤2MHz		±0.5	±2	LSB
总绝对误差	Ead	VDD=5.0V, V _{REF} =5.0V ADC_CLK≤2MHz			±3	LSB
ADC 时钟周期	t _{AD}	ADC_CLK≤2MHz	0.5		16	us
ADC 采样时间	tsamp		1		16	t _{AD}
总转换时间	Tcon		15		30	t _{AD}

8. 封装尺寸

8.1 SOP16封装

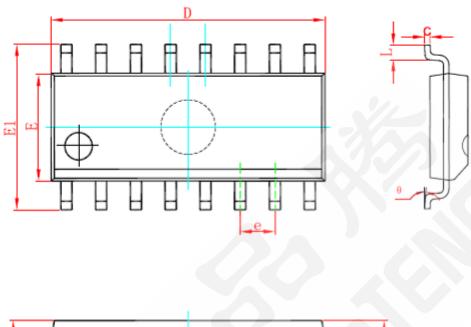
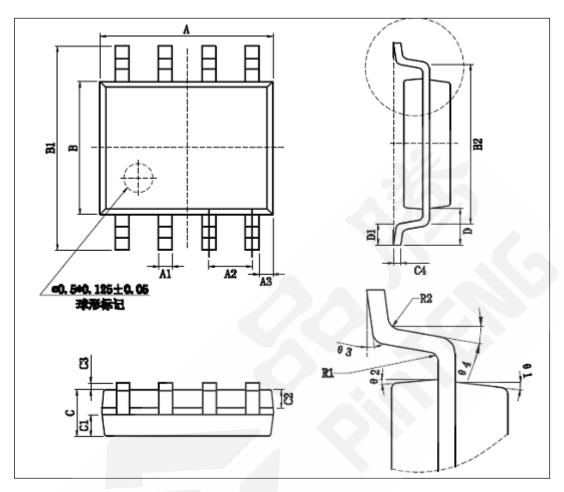


图 9 SOP16 封装图

表 11 SOP16 封装尺寸

然 且	尺寸(mm 单位)			佐日	尺寸	(Inches 単	1位)
符号	最小值	典型值	最大值	符号	最小值	典型值	最大值
Α	1.35	-	1.75	Α	0.053	-	0.069
A1	0.10	-	0.25	A 1	0.004	-	0.010
A2	1.35	-	1.55	A2	0.053	1	0.061
b	0.33	-	0.51	b	0.013	-	0.020
С	0.17	-	0.25	С	0.007	-	0.010
D	9.80	-	10.2	D	0.386	-	0.402
E	3.80	-	4.00	E	0.150	-	0.157
E1	5.80	-	6.20	E1	0.228	-	0.244
е	-	1.270	-	е	-	0.050	-
L	0.40	-	1.27	L	0.016	-	-
θ	0°	-	8°	θ	0°	-	8°

8.2 SOP8封装



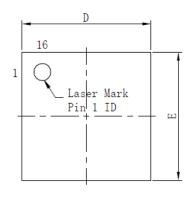
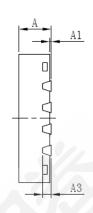
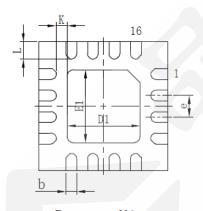

图 10 SOP8 封装图

表 12 SOP8 封装尺寸


符号	尺寸 (mm 单位)				
付亏	最小值	典型值	最大值		
Α	4.80	-	5.00		
A1	0.35	-	0.45		
A2		1.27	-		
А3	-	0.345	-		
В	3.80	-	4.00		
B1	5.80	-	6.20		
B2	1	5.00	-		
С	1.30	1.30 -			
C1	0.55	-	0.65		
C2	0.55	-	0.65		


8.3 QFN16封装

Top View

Side View

Bottom View

图 11 QFN16 封装图

表 13 QFN16 封装尺寸

符号	尺寸(mm 単位)					
打力	最小值	典型值	最大值			
Α	0.70	0.75	0.80			
A1	0.00	-	0.05			
А3	0.203REF					
b	0.20	0.25	0.30			
D	2.90	3.00	3.10			
E	2.90	3.00	3.10			
D1	1.60	1.70	1.80			
E1	1.60	1.70	1.80			
е	0.50TYP					
K	0.20	-	-			
L	0.30	0.40	0.50			

8.4 DFN2*3-8L封装

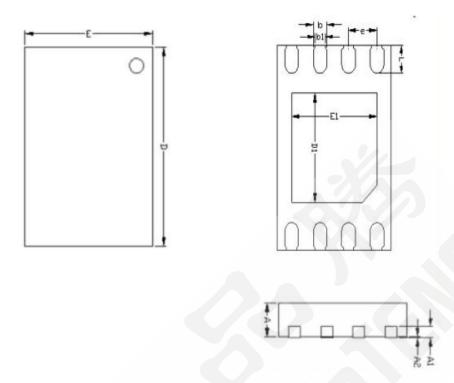


图 12 DFN2*3-8L 封装图

表 14 DFN2*3-8L 封装尺寸

かた 口.	尺寸 (mm 単位)				
符号	最小值	典型值	最大值		
D	2.95	3.00	3.05		
E	1.95	2.00	2.05		
D1	1.55	1.60	1.65		
E1	1.45	1.50	1.55		
b	0.19	0.24	0.29		
b1		0.18REF			
е		0.50bSC			
L	0.35	0.40	0.45		
Α	0.45	0.50	0.55		
A1	0.15REF				
A2	0.00	0.02	0.05		

9. 历史记录

版本号	修改记录	发布日期
V1.0	初版	2021-05-31
V1.1	修改ADC失调校准流程	2022-03-31
V1.2	更新QFN16脚位图	2022-05-06
V1.3	删除OPTION配置选项与应用不相关信息	2022-07-01
V1.4	增加ADC采样转换完成时间计算公式	2022-07-04

